
MusicMapper: Interactive 2D representations of music

samples for in-browser remixing and exploration

Ethan Benjamin

Columbia University

Department of Computer Science

eb2947@columbia.edu

Jaan Altosaar

Princeton University

Department of Physics

altosaar@princeton.edu

ABSTRACT
Much of the challenge and appeal in remixing music comes
from manipulating samples. Typically, identifying distinct
samples of a song requires expertise in music production
software. Additionally, it is di�cult to visualize similarities
and di↵erences between all samples of a song simultaneously
and use this to select samples.
MusicMapper is a web application that allows nonexpert

users to find and visualize distinctive samples from a song
without any manual intervention, and enables remixing by
having users play back clusterings of such samples. This is
accomplished by splitting audio from the Soundcloud API
into appropriately-sized spectrograms, and applying the t-
SNE algorithm to visualize these spectrograms in two di-
mensions. Next, we apply k-means to guide the user’s eye
toward related clusters and set k = 26 to enable playback
of the clusters by pressing keys on an ordinary keyboard.
We present the source code1 and a demo video2 of the Mu-
sicMapper web application that can be run in most modern
browsers.

Author Keywords
Machine Learning, t-SNE, JavaScript, Remix, Visualization

1. INTRODUCTION
Currently, one needs to be a domain expert in music pro-
duction to select appropriate samples and piece them to-
gether creatively in aesthetically pleasing ways. A typical
production pipeline involves selecting a song, choosing in-
teresting parts from it (the samples), and combining these
to form a remix or new musical composition. By combin-
ing the detection of similar parts of songs and letting users
visualize and play back these similar clusters, and doing
all of this in-browser, we hope to reduce the barrier of en-
try to experiencing the fun of remixing and visualizing mu-
sic. Furthermore, every song analyzed and visualized using
this method e↵ectively becomes a new ‘instrument,’ whose
similarly-clustered parts can be deconstructed and remixed
at will.
There exist automated approaches to sample identifica-

tion in music [5] but there is little work on the inverse ques-

1Code: https://github.com/fatsmcgee/MusicMappr
2Demo video: http://youtu.be/mvD6e1uiO8k

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

NIME’15, May 31-June 3, 2015, Louisiana State Univ., Baton Rouge, LA.

Copyright remains with the author(s).

tion: what parts of a given song should be sampled? Our
intuition for this is that nearby mel-spectrograms of chunks
of songs should sound similar enough to combine them as
samples in a remix.
There is also previous work related to visualizing samples

for music production purposes using supervised visualiza-
tion techniques [2] and the visualization of loop libraries [1].
Here, we use an unsupervised technique from machine learn-
ing, t-distributed Stochastic Neighbor Embedding (t-SNE)
[3] for visualizing samples. The t-SNE algorithm is ideal for
taking high dimensional features (such as spectogram data)
and reducing them to a low dimensional mapping which
faithfully portrays intra-data di↵erences. Using t-SNE, we
are able to show all samples of a song as a two dimensional
scatterplot layout.
By employing such techniques and exploiting modern

JavaScript optimization methods in web browsers, we hope
to reduce the activation energy required on a user’s part
to start remixing and visualizing songs. Rather than open
audio production software, load audio, select samples man-
ually, map them to MIDI notes, then play them back, a
user need only go to the web address of the MusicMapper
web application, select a song, wait for convergence of the
algorithm, and begin exploring and remixing.

2. ALGORITHM
Our algorithm has three primary phases. First, we divide
the input song into evenly sized chunks. We then calculate
features for each song chunk (Subsection 2.1). We input
these features into the t-SNE algorithm and use a heuristic
for adequate subjective convergence (Subsection 2.2). Fi-
nally, we perform k-means clustering on the final t-SNE
output to visualize each cluster by its convex hull (Subsec-
tion 2.3).

2.1 Feature Selection
When given a song from an MP3 file or the Soundcloud API,
we extract an array of its raw audio samples and divide
this array into evenly sized “chunks” of of 16394 samples.
Exploring di↵erent chunk sizes automatically is noted as a
direction for future work.
We then perform a discrete Fourier transform on each

chunk to get a frequency spectogram. Because typical im-
plementations of the discrete fourier transform perform op-
timally with arrays whose length is a power of 2, we opted
for chunks whose length is the power of 2 closest to 0.3 sec-
onds (resulting in 16384 samples per chunk for the most
common sampling rate of 44, 100 Hz).
Our algorithm converts Fourier magnitudes to histograms

of a perceptually based mel scale. We use O’Shaughnessy’s
formula [4] to convert frequency f to melm, m = 1127 loge(1+
f/700). Buckets in this histogram correspond to equal ranges
of mel scale frequencies. For each bucket, we aggregate
the magnitudes of all raw frequencies that belong to that

325

Proceedings of the International Conference on New Interfaces for Musical Expression, Baton Rouge, LA, USA, May 31-June 3, 2015 



range. For instance, consider the bucket that contains mel
scale frequencies from 320 to 352. Mel 320 is equivalent to
229.85 Hz and mel 352 is equivalent to 256.63 Hz. Therefore
this bucket will equal the summation of magnitudes in the
Fourier spectrums from 229 to 256 Hz.
We found that using 100 mel histogram buckets worked

better than raw magnitudes from the discrete Fourier trans-
form in subjectively distinguishing song chunks. As an
added benefit, the reduction from thousands of Fourier spec-
trum values to 100 buckets allowed t-SNE to converge con-
siderably faster (as t-SNE computes intra-feature euclidean
distances at each iteration).
In experiments, we also found that these features con-

veyed richer information than mel-frequency cepstrum co-
e�cients, which tended to conform closely to a one dimen-
sional structure in their low-dimensional embedding. When
t-SNE processed MFCCs in two dimensional space, the re-
sulting embedding tended to be a single curve in which dis-
tance along the curve was proportional to pitch.

2.2 t-SNE and Convergence
After computing mel histogram data for each song chunk,
we feed these features into t-SNE.
t-SNE finds an optimal embedding through gradient de-

scent and updates its solution on each iteration. During
this process, we visualize the current t-SNE solution in two
dimensions, stretching it to fill the browser window.
Determining good convergence criteria for t-SNE proved

di�cult. Ultimately, we developed heuristics that mirrored
a user’s subjective perception of convergence in the ani-
mated t-SNE solutions. Specifically, we track the 2-D points
and quantify how much each point has moved from itera-
tion to iteration, scaling by the extent of all 2-D points in
the solution. Because t-SNE’s solution can change rapidly
from iteration to iteration but remains stable if it has moved
slowly at a high enough number of iterations, we ensure that
solutions are stable for a certain number of steps. We found
that ensuring stability for 50 step increments worked well
in practice.

2.3 Clustering
After t-SNE has converged, we mark clusters in the data
and allow the user to interact with each cluster. To reveal
additional structure in the data and allow interaction with
related groupings of song chunks, we run k-means cluster-
ing on the final t-SNE solution, with k = 26 (each cluster
corresponding to one alphabet letter on a standard key-
board). We denote each cluster in our visualization by
drawing curves which match their convex hulls. The gra-
ham scan algorithm is used to calculate each convex hull.
We mark the center of each cluster with its corresponding

alphabet letter. Pressing that letter on a user’s keyboard
will play through chunks corresponding to that cluster in
order of their appearance in the original song. Users can
simultaneously play di↵erent clusters at the same time, as
they would on a sampler or drum machine.

3. IMPLEMENTATION
We chose to implement MusicMapper as a static web ap-
plication using HTML, CSS, and JavaScript with no server
backend, as shown in Figure 1. This allowed us to avoid
server costs and easily deploy the application, and take ad-
vantage of the rich layout and visualization features avail-
able in modern web development.
Though JavaScript is not a typical target for machine

learning and numerical applications, we were able to find
several libraries needed by our algorithm. In particular, we
found that existing libraries for the discrete Fourier trans-
form, t-SNE, k-means clustering, and graham scan were

Figure 1: Final solution after convergence and clus-
tering of “One (Your Name) Feat. Pharrell” by
Swedish House Mafia following spectrogram gener-
ation, t-SNE, and k-means. Pressing keys on the
user’s keyboard will play through the samples in
the cluster corresponding to the label, enabling in-
browser remixing.

suitable. We used D3.js to visualize t-SNE solutions, includ-
ing clusters and their convex hulls. To extract raw audio
data from song files, we used the WebAudio API.

3.1 JavaScript Optimization
Feature computation, requiring Fourier transforms for every
chunk of a song, proved to be the most time-consuming
portion of our application. To improve runtime, we used
WebWorkers to exploit multiple cores and fully utilize the
CPU. Because features can be calculated independently for
each chunk, we simply divided Fourier calculation among
multiple workers.

4. CONCLUSION
We presented MusicMapper, an interactive online tool for
allowing nonexperts to visualize and play back samples of
songs. This was accomplished through a pipeline of break-
ing songs up into chunks, computing their mel-spectrograms,
using the t-SNE algorithm for visualization, and k-means
clustering for visualizing similar chunks. The code is open
sourced at https://github.com/fatsmcgee/MusicMappr, and
a demo video is at http://youtu.be/mvD6e1uiO8k.

5. REFERENCES
[1] S. Dupont, T. Dubuisson, C. Frisson, R. Sebbe, and

J. Urbain. Audiocycle: Browsing musical loop libraries.
Content-Based Multimedia Indexing, 2009.

[2] O. Fried, Z. Jin, R. Oda, and A. Finkelstein.
AudioQuilt: 2D Arrangements of Audio Samples using
Metric Learning and Kernelized Sorting. Proceedings of
the International Conference on New Interfaces for
Musical Expression, pages 281–286, 2014.

[3] L. V. D. Maaten and G. Hinton. Visualizing Data
using t-SNE. Journal of Machine Learning Research,
9:2579–2605, 2008.

[4] D. O’Shaughnessy. Speech Communications: Human
and Machine (Addison-Wesley Series in Electrical
Engineering). Addison-Wesley, 1987.

[5] J. Van Balen, J. Serrà, and M. Haro. Sample
identification in hip-hop music. Music and Emotions,
pages 301–312, 2013.

326

Proceedings of the International Conference on New Interfaces for Musical Expression, Baton Rouge, LA, USA, May 31-June 3, 2015 


