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Abstract

PPLIED machine learning relies on translating the structure of a problem into
@ @ a computational model. This arises in applications as diverse as statistical
@QV? ZD physics and food recommender systems. The pattern of connectivity in an
undirected graphical model or the fact that datapoints in food recommendation are un-
ordered collections of features can inform the structure of a model. First, consider undi-
rected graphical models from statistical physics like the ubiquitous Ising model. Basic
research in physics requires scalable simulations for comparing the behavior of a model
to its experimental counterpart. The Ising model consists of binary random variables
with local connectivity; interactions between neighboring nodes can lead to long-range
correlations. Modeling these correlations is necessary to capture physical phenomena
such as phase transitions. To mirror the local structure of these models, we use flow-
based convolutional generative models that can capture long-range correlations. Com-
bining flow-based models designed for continuous variables with recent work on hier-
archical variational approximations enables the modeling of discrete random variables.
Compared to existing variational inference methods, this approach scales to statistical
physics models with millions of correlated random variables and uses 100 times fewer
parameters. Just as computational choices can be made by considering the structure of
an undirected graphical model, model construction itself can be guided by the structure
of individual datapoints. Consider a recommendation task where datapoints consist of
unordered sets, and the objective is to maximize top-K recall, a common recommen-
dation metric. Simple results show that a classifier with zero worst-case error achieves
maximum top-K recall. Further, the unordered structure of the data suggests the use of
a permutation-invariant classifier for statistical and computational efficiency. We eval-
uate such a classifier on human dietary behavior data, where every meal is an unordered
collection of ingredients, and find that it outperforms probabilistic matrix factorization
methods. Finally, we show that building problem structure into an approximate infer-

ence algorithm improves the accuracy of probabilistic modeling methods.
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Chapter 1

Introduction

= /ROM the development of novel antibiotics (Stokes et al., 2020) to cataloging
ﬁ sources of light in the night sky (Regier et al., 2019), many domains in science
@ / can benefit from applied machine learning methods. However, the utility of
such methods hinges on building the structure of a problem —knowledge about the data
or task—into a machine learning solution. Whether the setting is statistical physics or
recommender systems, an off-the-shelf machine learning method can serve as a start-
ing point. But performance is sacrificed when a method cannot be customized to the
specifics of an applied scientific problem. This thesis focuses on probabilistic modeling,
where what is known about a problem can be molded into assumptions about a probabil-
ity distribution. We develop probabilistic modeling methods that use the structure of a
problem to yield meaningful solutions in the study of models with large numbers of ran-
dom variables in statistical physics systems and recommender systems. In tandem, this
thesis develops an algorithm to improve the accuracy of approximations to probabilistic
models, through the use of the structure of a probability model during optimization. By
both building scalable probabilistic modeling methods tailored to answer scientific ques-
tions, and improving flexible probabilistic modeling methods themselves, we highlight

the reciprocal relationship between these aims.



One example of an applied problem in statistical physics is the study of probable configu-
rations of atoms in a material. Simulating a material to find likely configurations of atoms
with statistical physics models can be expensive, but designing materials with improved
properties is valuable (Schmidt et al., 2019). The computational cost of these simula-
tions for studying statistical physics models can be reduced by doing math, for example
in analytical calculations to develop approximations or to incorporate knowledge of how
neighboring atoms interact into simulations (Swendsen and Wang, 1987). A challenge
in studying statistical physics models is balancing problem-specific customization with
the resulting computational savings. Machine learning techniques applied to statistical
physics systems can be used to develop generic methods that exploit problem structure
tor better performance. These methods can be re-used across models, saving practition-

ers time.

Where statistical physics concerns probable configurations of interacting atoms, rec-
ommender systems find items a user is likely to interact with (Koren et al., 2009). For
example, humans eat. A meal recommender system can predict which meals someone
is likely to consume. Such a recommendation model might inform its predictions using
the history of meals a user has eaten, namely which foods comprise those meals. A prop-
erty of this type of data is that items (meals) are associated with unordered collections
of attributes (sets of foods). This means that the number of possible meals a user might
consume is very large. Existing methods for this type of data either cannot scale to large
numbers of datapoints, or fail to accurately predict which items a user is likely to con-
sume. This highlights the need to imbue a recommendation model with both properties
of the data (such as meals represented as unordered sets) and the goals of the recommen-

dation problem, or accurate prediction of which items a user will consume.

Both statistical physics models and recommender systems can be framed as probabil-
ity models, the former as probable configurations of atoms, and the latter as probable
items users may consume. Probabilistic modeling relies on inferring the parameters of

a probability model using knowledge about the structure of the problem. For example,



knowledge in the form of data regarding which meals someone has eaten can inform the
predictions of a recommendation model; or, knowledge of how neighboring atoms inter-

act in a material can be used in a probabilistic model of that material.

Practitioners that work with probability models seek probabilistic inferences. For
example, the goals of such inferences include computing probabilities, summing over
the random variables in a probability model, or finding likely configurations of random
variables. Common inference methods are Markov Chain Monte Carlo (Metropolis
et al., 1953), variational inference (Blei et al., 2017), and maximum likelihood estima-
tion (Bishop, 2006). This thesis uses variational inference and maximum likelihood
estimation, as both algorithms can be scaled to large probability models (Hoffman et al.,
2013; Robbins and Monro, 1951). In particular, the variational inference algorithm can
aid probabilistic inference in interacting systems of random variables found in statistical
physics models. However, variational inference is sensitive to the initial choice of pa-
rameters governing the probability of the random variables under study. The accuracy
of inferences of likely configurations of random variables can suffer, depending on this
choice of initial parameters. Inference algorithms such as variational inference are utile
in applied domains insofar as their performance is independent of the initial choice of

parameters.

This thesis is organized as follows. Chapter 2 introduces probabilistic models and gives
examples of their use in statistical physics and recommender systems. We also review
two approaches for statistical inference in probability models: variational inference and
maximum likelihood estimation. Chapter 3 develops and applies variational inference
methods for statistical physics models. We show that exploiting the structure of a sta-
tistical physics model in a variational inference method is advantageous. This work was
presented in Altosaar et al. (2019). Chapter 4 develops probability models for recom-
mending items with sets of attributes and is based on Altosaar et al. (2020). Similar to
variational methods in physics, accounting for the structure of the problem helps: prob-

ability models that represent set-valued datapoints and the goals of the recommendation



task are accurate and scalable. Chapter § develops proximity variational inference (PV1)
based on Altosaar et al. (2018). PVI is an inference algorithm that is imbued with infor-
mation about a probability distribution we wish to infer. In this case, the structure of the
problem is information about a probability distribution, which is used to inform an algo-
rithm for fitting a probability model. We show how this enables PVI to obtain accurate
solutions. Finally, Chapter 6 reviews how knowledge about a problem is useful in build-
ing probabilistic models for science solutions. We apply the pv1 algorithm developed in
Chapter 5 to the statistical physics setting of Chapter 3 and the recommender systems
application of Chapter 4. This highlights that methods development goes hand-in-hand
with the aims of applied probabilistic modeling. We close with a discussion of extensions

of this line of work.



Chapter 2

Background

HIS chapter describes probabilistic models and probabilistic inference,
S e
% taking as examples models from statistical physics and recommender sys-

tems.

2.1 Probabilistic Models

Probability models assign probability to configurations of random variables. The random
variables in a probability model might correspond to observed variables in a physical sys-
tem, or to latent properties representing patterns in data collected from the world, or a
combination of both. To define a probability model, it is necessary to specify the density
p of a collection of random variables z. We focus on probabilistic models p(z) where rela-
tionships between random variables can be encoded as edges in a graph, or probabilistic

graphical models (Jordan, 2004).

2.1.1  Example: Ising Model

For example, consider a model used in statistical physics: the Ising model. The Ising
model can be used to model interactions between atoms in a material (Henelius et al.,

2016) to study how the material behaves in different conditions, paving the way to-



Figure 2.1: The Ising model is a probabilistic model used in statistical physics. The
nodes in this probabilistic graphical model represent random variables, and the edges in
the graph represent relationships between neighboring random variables. In this Ising
model there are nine random variables variables z = {z;, z,, .., zo} represented by nodes
and the edges connecting two nodes indicate that those random variables interact in the
energy function of the model E(z).

ward material design. This probabilistic model has binary random variables z,, with
density

p(z: ) = w. (2.1)

The semicolon in Equation (2.1) denotes that the model has a parameter §, represent-
ing the reciprocal temperature of the system of random variables (a physical quantity).
The energy function E(z) encodes the relationships between random variables, and 2,
the normalizing constant, ensures that this probability distribution sums to one over all
configurations of random variables (Chandler and Wu, 1987). The energy function of the
Ising model is

1
E(z) = -5 iZj:Jijzizj —Hzi: Z;. (2.2)

The interaction strength J;; defines the interactions between random variables. In a sim-
ple Ising model, only nearest neighbors interact, so J;; is nonzero if the random variables
z; and z; are neighbors. The parameter H increases or decreases the energy in proportion

to the values of the random variables z;; we give its physical interpretation later.

"Bold letters can denote collections of random variables z = {z,, z,, ..., Zy}, or vectors, depending on the
context.



The Ising model can be represented as a probabilistic graphical model, shown in Fig-
ure 2.1. 'Two variables z; and z; interact (changing the value of one leads to a change in
probability of the other) only if they share an edge in the graph. This representation
works in conjuction with the density in Equation (2.1), as the presence of an edge in the
graph corresponds to two variables interacting in the energy function E. In this model,
the energy function (and hence graph) is such that only neighboring random variables

interact.

The Ising model can be used to study physical systems such as magnetic materials, where
interactions between atoms can be encoded into the interaction strength J;;. The inter-
actions between random variables encoded in this manner contain the necessary infor-
mation to model the properties of a material. In modeling a material, the random vari-
ables z can be referred to as spins. Spinis a type of angular momentum carried by particles
comprising atoms, and such angular momentum causes a magnetic field. Although the
random variables z are binary, taking on values of —1 and +1, they can be re-scaled to
the magnetic strength of the atoms in a particular material of interest if comparison to
experimental data is required. The parameter H can be interpreted as the magnitude of
an external magnetic field that interacts with the magnetic strength and orientation of

every atom (Chandler and Wu, 1987).

To see how well an Ising model mirrors a physical material, a property such as magneti-
zation can be measured in the material, and calculated using the model. Magnetization
is the average orientation of the magnetic strength of every atom or random variable in

the material,

1 N
M(Z) = N Z Zj. (23)
i=1

By measuring the magnetization M and computing its value in the Ising model, a prac-
titioner can deduce how accurately the model reproduces experimental data. For ex-
ample, if an Ising model with nearest neighbors (Jj; # 0 if i neighbors j) does not accu-

rately reproduce the magnetization of a physical material, it may be necessary to include



Attributes User
Items Pizza Eggs Taco Salad Avocado Chicken Sardines Beer Coffee I
Morning Pizza b 4 i i
Dinner Pizza b
Small Salad i hd i
Big Salad b b hd i b b
Taco ° ° ° °
Fish Taco i b

Table 2.1: Example binary classification data. A user consumes meals (rightmost col-
umn), and meals have attributes (table on the left. Meals are represented as datapoints
x, with covariates being foods in the meals. The goal of a binary classifier trained on
this data is to predict which meals a user will consume, or which datapoints (x,, ,,) have
alabel y, = 1. An accurate classifier will information about which covariates are shared
across positive or negative labeled datapoints; for example, this user consumes meals that
include eggs and coftee.

second-nearest neighbor effects (J;; # 0if i and j are connected by a path of length at

most two).

Another example of a quantity that can be measured experimentally and computed in a

probabilistic model is the thermodynamic free energy F,

F = —%logz. (2.4)

The free energy of a system relates to the amount of energy that can be extracted from
a system by its surroundings. For example, the free energy of a protein is used to under-
stand its stability, and can be measured by the amount of energy needed to destroy its
structure by denaturing it (Stone, 2013). In modeling a magnetic material or biological
material, the free energy can be derived from the normalizing constant Z (Chandler and

Wu, 1987).

2.1.2 Example: Binary Classification

Another example of a probabilistic model is a binary classifier (Bishop, 20006), repre-
sented as a graphical model in Figure 2.2. Consider N datapoints of the form (x,, ,,) con-
sisting of covariates x, and binary responses y,,. As illustrated in Table 2.1, the covariates

x, might represent information about items such as foods in a meal, and y,, may indicate



//@
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\ N,

Figure 2.2: Binary classification is a probabilistic modeling technique used in rec-
ommender systems. Observed random variables are denoted by shaded nodes, and di-
rected edges in the graph indicated conditional dependence on a node’s parents. There
are N independent, identically distributed observations (y,, x,); the rectangular plate de-
notes repetition of nodes and edges. The model predicts a binary response y, using pa-
rameters 6 and covariates x,,.

whether a single user ate a meal with those foods. A binary classifier would then classify

whether the user would eat a new meal %, based on its constituent foods.

Abinary classifier is defined using a regression function f with parameters 6. The logistic
function o applied to the regression function defines the probability model for a binary
classifier,

PO | 2030 = 2 (2”;6) ) ) @.5)

The logistic function constrains the output of f to the unit interval, and 2 is again the
normalizing constant. The regression function f uses information about a datapoint to
classify whether the response y, is positive. An example of a regression function is an
inner product, defined by

fCx;€) = 0Txp, (2.6)

which corresponds to logistic regression (Bishop, 2006). Alternatively, a more flexible

model can be built using a deep neural network (LeCun et al., 2015).



2.2 Inference

In a probability model, computing—or, inferring—properties of the probability dis-
tribution is a central task. One inference problem is to ascertain likely configurations
of random variables. Another is to compute the sum of a probability distribution over
a set of random variables, for example, to compute the normalizing constant (Jordan,

2004).

2.2.1 Computing Likely Configurations of Random Variables

In the study of a probability model such as a binary classifier in Equation (2.5), one ques-
tion of interest is: for a set of observations (x,, y,,), what is a likely value of 62 Maximum

likelihood estimation is one way to answer this question (Bishop, 2000).

A probability distribution like p(y | x; 6) is also known as a likelihood function. It defines
the likelihood of a random variable y conditional on the value of data x, with the current
setting of the parameters 6. The maximum likelihood estimate of the parameters of this

probability model for the data (x,y) is given by
0" = argmax p(y | x;0). (2.7)
0

This maximum likelihood estimate of the parameters 6* can be computed using stochas-

tic optimization if the data is large (Robbins and Monro, 1951).

2.2.2 Computing the Normalizing Constant

The second central inference task in probabilistic modeling is summing a probability
model over a set of random variables. One example of this is computing the normal-
izing constant Z. This inference problem requires computing a sum: the normalizing
constant ensures a probability distribution sums to 1 over values the random variables

can take.

10



Consider computing the normalizing constant for the binary classifier in Equation (2.5).
To compute the normalizing constant Z for this probability model, we can sum over the

binary values the random variable y, can take,

exp (0(f(x436)) - ¥n)
1= Z > (2.8
yn€{0,1}
=>2= ), exp((f(x4;6)-yn) (2.9)
yn€{0,1}
Z=1+exp(o(f(x,;9))) . (2.10)

Inference of the normalizing constant Z is straightforward in this probability model. The
random variable y, is binary, so there are only two terms in the sum needed to compute

the normalizing constant.

Next, consider computing the normalizing constant or partition function for the Ising
model in Equation (2.1). The random variables z,, in this model also take on binary values.
The partition function is computed by summing over all the values associated with all

random variables in the system, z = {z;, ..., zy'}:

exp(—PE(z))
- —z (2.11)
ZIE{—21,+1} ZNE{Z_:I,H} Z 2.11
>2= > . > exp(—fE@). (2.12)

z1e{-1,+1} zye{-1,+1}

There are N binary-valued random variables and 2V terms in the sum required to compute
the partition function, so inference in the Ising model is difficult. For Ising models used
to study materials, the partition function is intractable to compute for most model sizes

practitioners want to study and compare to physical realizations.

One way to address the issue of an intractable partition function is with sampling meth-
ods, such as Markov chain Monte Carlo (Metropolis et al., 1953). These algorithms en-
able inference by simulating likely configurations of random variables. These samples of

likely configurations are used to approximate quantities of interest such as the partition
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p(z)
kL(q(z:47) || p(z))

Figure 2.3: Variational inference finds the member of the variational family closest
to the target distribution. The oval in the cartoon represents the space of variational
approximations q(z; 1), and the goal of variational inference is to find variational param-
eters A* that yield an approximation close to the target probability model p(z). One way
to measure the distance between a variational approximation and the target probability
distribution is with the Kullback-Leibler (KL) divergence.

function. But, Markov chain Monte Carlo methods are difficult to scale to probabilistic
models with large numbers of correlated random variables. In this thesis, we instead use
variational inference, an approximate inference algorithm that relies on optimization in-

stead of sampling.

2.3 Variational Inference

Instead of working with a probability model p(z) directly, variational inference (VI) posits
a family of distributions q(z; 1) indexed by parameters 4 (Blei et al., 2017). The goal of
variational inference (V1) is to find the closest member of the variational family q to the
target distribution p. The algorithm consists of varying the parameters A to improve the
quality of the approximation, as illustrated in Figure 2.3. One way to measure the distance
between the variational approximation and the target distribution is with the Kullback-

Leibler (xL) divergence, or relative entropy (MacKay, 2003; Ranganath, 2018).
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The intractable partition function in p(z) appears in the KL divergence VI uses to assess

distance,

KL(q(z4) || p(2)) = E4log q(z; 1)] — E4[log p(2)] (2.13)

But it is possible to derive an objective function that does not depend on the partition
function, starting from the KL divergence. Taking the Ising model in Equation (2.1) as an

example,

KL(q(z4) || p(z)) = E4llog q(z; 1)] — E4[log p(2)] (2.14)
KL(q(z4) || p(z)) = E4llog q(z; 1)] — E4[-BE(z) — log 2] (2.15)
log2 = Eg[~BE@)] - Egllogqz: A)] + KL(q(z:4) || pz))  (2.16)

= log2 > £(A) = E,[-BE(2)] - E,[log q(z; 1)]. (.17)

This lower bound £ on the log normalizing constant is also called the evidence lower
bound (ELBO), and serves as the objective function for vI. In deriving this lower bound
from Equation (2.16) to Equation (2.17), we used the fact that the KL is greater than or
equal to zero. To show this fact, we start from Jensen’s inequality for a convex function
f,or

f(Elz]) < E[f(2)]. (2.18)

The logarithm in the KL is concave, so its negative is convex. We apply Jensen’s inequality

to the negative KL in Equation (2.13):

—KL(q(z) || p(z) = [log P (z)] (2.19)
< log[E [pgzi] (2.20)

= log f q(z) p( ) (2.21)

= log f p(z)dz (2.22)

-0. (2.23)
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This shows that the KL is greater than or equal to zero (Cover and Thomas, 2012).

The left-hand-side in Equation (2.17) does not change as the variational parameters 4
are varied in £(4). In words, maximizing the lower bound £(4) is equivalent to mini-
mizing the KL divergence between the variational approximation and target probability

model.

2.3.1 Example: Mean Field Variational Inference in the Ising model

To demonstrate VI, we use the Ising model described in Section 2.1.1 with probability
distribution p(z) defined in Equation (2.1) and energy function E(z) in Equation (2.2). In-
specting the intractable partition function of the Ising model can help construct a varia-

tional family q(z; 1) to approximate the Ising model.

The Ising model partition function in Equation (2.12) is intractable because the sums do
not decompose by random variables: every sum must be carried out in order, because
the result of the Nth sum over the random variable zy depends on the results of the sums
over the previous N — 1 random variables. This is because of interactions between de-
pendent random variables. The first term in the energy function of the Ising model rep-
resents nearest neighbor interactions, z;z;, and is graphically equivalent to the links be-

tween nearest neighbors in Figure 2.1.

However, the second term in the Ising energy function in Equation (2.2), H . z;, does
decompose by random variable. Physically, this corresponds to a magnetic field applied
to the system as a whole, so every random variable is subject to the same force. Mathe-
matically, there is an outer sum over every configuration of random variables, and in this
term the results of the summation over a variable z; do not affect the summation over
another variable z;. So this magnetic field term can be evaluated for systems with many

random variables.

The structure of the Ising model energy function and corresponding graphical model

can be used to build a variational approximation q(z; 1) as follows. If the second term of

14
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Figure 2.4: The structure of an Ising model can inform variational approxima-
tions. This graphical model illustrates a Markov blanket in the Ising model of Figure 2.1.
The Markov blanket of a node is the set of nodes whose values need to be fixed to ren-
der a node independent of the rest of the graph. In an Ising model, only neighboring
random variables interact and therefore comprise the Markov blanket of a node. Here,
the Markov blanket of the central node are shaded, indicating that their values are fixed.
The missing edges between the peripheral nodes indicate that the central node is inde-
pendent of the rest of the graph, conditional on its Markov blanket.

the Ising model energy function does not lead to an intractable partition function due
to every random variable being subject to a magnetic field, one can construct a varia-
tional approximation by extending this physical intuition and developing the concept of
a ‘mean field’. Consider the central random variable z; in Figure 2.1. Fixing the values of
its nearest neighbors renders this random variable independent of the rest of the graph
as shown in Figure 3.2. The nearest neighbors of the central random variable can then
be interpreted as giving rise to a magnetic field. The strength of this magnetic field is
unknown, so we can define this unknown strength as a variational parameter 6H that we
will infer using v1. This mean field is additive to the external magnetic field H applied
to the system as a whole, so the energy function for the central random variable z; under

this mean field assumption can be written
Eyr(zi;6H) = 6Hz; + Hz; . (2.24)
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Note that we have replaced the interaction term J;z;z; in the Ising model energy func-
tion in Equation (2.2) by the mean field 6H. The mean field assumption is that term can
approximate the effects of neighboring nodes (Chandler and Wu, 1987). If we repeat this

argument for every node in the graph, we arrive at the mean field energy function

N
Eyy(z:6H) = —(H+8H) Y z;. (2.25)
i=1

The above construction starting from the mean field assumption corresponds to the vari-
ational approximation with density
1 EXP(—BEye(zi3 5H))
qz:B.6H) = [ | = : (2.26)
MF

i=1

and we see that the variational parameter A is simply the mean field strength §H. The
mean field variational approximation corresponds to a fully factorized probability distri-
bution where every random variable is independent (Wainwright and Jordan, 2008). This
is auseful property, as the partition function is tractable in this mean field variational ap-
proximation: we can compute the partition function for every random variable by itself.
The partition function for a single random variable z; under the mean field assumption

is straightforward,

Zmr,i = Z exp(—p(H + 6H)z;) (2.27)
zje{—1,+1}
= 2cosh(B(H + 6H)), (2.28)

and the partition function for the variational approximation for all variables is simply

Zye = 25y ;- Similarly, the average of arandom variable under the variational distribution

16



is readily computed as

Zj eXP(—ﬁEMF(Zﬁ 6H))

ZMF, i

= z; exp(—p(H + SH)z;)
) Zie{—zl,+l} 2 cosh(B(H + 6H)) (2.29)

Eqeplzil = D]

z;e{-1,+1}

= —tanh(B(H + 6H)).

Now that we have constructed a variational family for the Ising model, we can proceed
with the v1 algorithm. The next step is writing down and maximizing the lower bound on
the log partition function to minimize the KL between our approximating distribution

and model.

The lower bound on the log partition function £(6H) in Equation (2.17) becomes

£(8H) = Eq[~PE(2)] — Eqllog q(z; SH) (2.30)

=k —%52%21'21 —pHY, Zi] — Eq [-BWH + 6H) Y, ;| + log Zyy (2.31)
| i,j i

+log Zyy, (2.32)

_ 1
= |Eq _EBZ‘LJZlZJ+‘85HZZl
| i,j i

and we can take the expectation inside the sum using the fact that the mean field varia-

tional distribution is fully factorized, so

1
L(8H) = =58 D JijEqezp 2ilEqezy 2] + BOH D Eqzplzi] +log Zue (2.33)
L,J 1

(2.34)

In the first term, recall that two random variables z; and z; have the same distribution
under the mean field assumption, and that every variable interacts with its four nearest

neighbors in the Ising model. The lower bound on the log partition function then be-
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comes
1
L(6H) = —§B4JN[Eq(Zi)[zi]2 + ANSHE ;[ zi] + log Z e - (2.35)

The next step in the VI algorithm is maximizing this lower bound, to minimize the KL
divergence between the variational approximation and the model. Taking the deriva-
tive with respect to 6H and suppressing the subscript of the expectation operator, we
get

8.L(SH)
06H

= NB(—4JE[z;185,Elz;] + Elz;] + HOs51E[z;]) + NB tanh(B(H + 6H)). (2.36)

Next, setting this derivative to zero and cancelling out terms (and using Equation (2.29))

leads to

0 = —4JE[z;]051E[z;] + HOsp E2z;]) (2.37)
= 8HosyE[z;]) = ATE[z;1055E[zi] (2.38)
= SH* = 4JE[z]. (2.39)

This shows that under a mean field assumption, the variational parameter that maximizes
the lower bound on the log partition function—and hence minimizes the KL divergence
between the approximation and model—is proportional to the mean field around any
node in the system. The structure of the model informs our choice of variational ap-

proximation.

The quality of the variational approximation q(z; 8, 6H*) from VI can be assessed in sev-
eral ways. For example, the magnetization M or the free energy F can be calculated us-
ing the variational approximation, and these values can be compared to Markov Chain
Monte Carlo simulations in small systems. This can be viewed as a type of predictive
check for a vI algorithm (Blei, 2014). However, the development of theoretical guar-

antees to assess the quality of variational approximations found with VI is an open area
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of research (Wang and Blei, 2019). Practitioners must currently empirically evaluate the
quality of variational approximations according to the task at hand, as we do in Chapters 3

and 5.

2.3.2 Variational Inference Originated in Statistical Physics

Previously, we derived a variational approximation to the Ising model by making a mean
field assumption. That the language of physics is used in machine learning algorithms
such as VI is no coincidence. In fact, Feynman (1972) and Feynman (2018) derives the
Gibbs-Bogoliubov-Feynman (GBF) inequality for use in a variational principle for ap-
proximating intractable partition functions using mean field assumptions. Consider a
model with energy function E and partition function Z, and a mean field variational ap-
proximation with energy function E,; (and corresponding partition function Zy;). Then

the GBF inequality reads (Feynman, 1972; Feynman, 2018)

2> Zyp exp (—B(E — Eyp)yy) - (2.40)

In physics, bra-ket notation is used to denote expectations. For example, expectations
with respect to Equation (2.26) are written ( - ),,.. Rewriting the GBF with statistics no-

tation for the expectation Eg[ - | yields

2 2 Zyp €Xp (_;8[Eq [E - EMF]) . (2.41)

Taking the logarithm, we recover the lower bound on the log partition function

log 2 > E4[—BE] — Eq[—fEyz] + 10g 2y (2.42)
= [Eq[_ﬁE] - [Eq [Iog qMF(Z;A)] (243)
=L(4). (2.44)
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This is identical to the log partition function lower bound in Equation (2.17). Hoffman
et al. (2013) review the historical roots of the variational principle in its machine learning

incarnation.

To complete the connection to machine learning, we relate this log partition function
lower bound to the evidence lower bound studied in the v1 literature (Blei et al., 2017). A
probabilistic model of data might have the following process for generating data x using

prior information in latent variables z:

z ~ p(z)

x ~ p(x| z)

The posterior distribution of this model is computed using Bayes’ rule,

p(x | z)p(z) ‘

p(z | x) = o)

The model evidence p(x) is the partition function of the posterior. Calculating the par-
tition function is what makes posterior inference difficult, as it requires integration over

the latent variables z,

p(x) = f p(x,z)dz,

and the latent variables z are typically high-dimensional, such as the number of random
variables in an Ising model. But VI can be used to approximate this intractable inte-
gral. The lower bound on the log partition function becomes the evidence lower bound

(ELBO):

log p(x) > £(4) (2.45)

L(2) = Eg4llog p(x,2)] — E4[log q(z; )] . (2.46)
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An example of a latent variable model without data is the Ising model —in this case, the
dataisanemptyset,x = {}. In this case £(4) is alower bound on the log partition function

as we derived in Equation (2.17) and identical to the GBF inequality.

2.4 Conclusion

We reviewed probability models and gave examples of their use in statistical physics and
recommender systems. The task of inference is central to working with probability mod-
els; we described variational inference and maximum likelihood estimation. The fol-
lowing chapters address the issue of building the structure of a problem into a perfor-
mant probability model, whether that structure concerns the connectivity in a statisti-
cal physics model, the structure of datapoints in a recommender system, or information
about a variational approximation useful in an optimization algorithm for this approxi-

mation.
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Chapter 3

Hierarchical Variational Models

for Statistical Physics

s probabilistic modeling finds widespread use in science, it is necessary to
@ @ adapt machine learning tools to the specifics of a scientific domain. In
@QV? ?Q this chapter we focus on probabilistic models used in statistical physics.
Whether such models are used in molecular dynamics simulations for finding drug can-
didates for disease (Shamay et al., 2018) or simulating solid state systems for materials
design (Schmidt et al., 2019), the scalability of machine learning methods is a bottleneck
for progress. Simulations need to be run for longer timescales and in larger systems, and
must leverage knowledge about the physical system under study to yield accurate pre-
dictions. As a step in this direction, this chapter centers on building scalable variational
approximations for statistical physics models, and develops hierarchical probabilistic

models to study their performance in large statistical physics systems.

3.1 Introduction

In statistical physics, building a model corresponding to a physical system is useful: com-

paring how the model’s predictions differ from experiment can be used to understand
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how a system behaves. For computing properties corresponding to a model’s behavior,
the normalization constant of the model’s Boltzmann distribution in Equation (2.1) is
a central quantity. The partition function can be used to derive properties of physics
models that can be measured in experimental realizations, such as specific heat or mag-
netization. Such properties of models can be compared to experimental values, which
can inform how a model might be improved to better mirror reality. But the partition
function is intractable for many probabilistic models of interest, as described in Chap-

ter 2.

One workaround to the problem of an intractable partition function is to use an approx-
imate inference algorithm such as Markov chain Monte Carlo (MCMC). MCMC relies on
sampling likely configurations of a system and does not require calculating the partition
function. In theory, these samples will be draws from the probability model of inter-
est (Metropolis et al., 1953; Andrieu et al., 2003). For example, samples from the Boltz-
mann distribution can be used to approximate physical quantities derived from the prob-

ability model, such as specific heat.

However, with limited computation MCMC has limitations. This method requires prac-
titioners to use convergence diagnostics (Brooks and Gelman, 1998) to assess whether
samples from the algorithm are independent. Scalable MCMC requires careful consider-
ation. While some scalable versions of MCMC have been developed (Neal et al., 20115
Welling and Teh, 2011), they are biased samplers that may not have guaranteed conver-
gence to samples from the probability model of interest. This is similar to how in VI per-
formance must often be assessed empirically. But in comparison to VI, unless a model-
specific algorithm has been developed (Wolff, 1989), generic MCMC methods do not read-

ily scale to large numbers of random variables.

In Chapter 2 we showed that the machine learning framework of VI is equivalent to
the Gibbs-Bogoliubov-Feynman variational principle. This has allowed practitioners to
study statistical physics models using many variational approximations, including vari-

ational autoregressive networks (VANs). As an example of a variational method enabled

23



by VI, we study hierarchical variational models (HVMs) as approximations to the Boltz-
mann distribution of statistical physics models. We find that HVMs scale to larger sys-
tems sizes than VANs in Sherrington-Kirkpatrick and Ising models. Testing the feasibility
of vi methods in statistical physics is a twofold opportunity. Statistical physics problems
might serve as benchmarks for vI, and using VI for these problems can lead to improved

computational methods in statistical physics.

Related Work. The GBF variational principle has been used to study Markov random
fields (Zhang, 1996) and the connection between variational inference and statistical
physics has been well-documented (Blei et al., 2017; Hoffman et al., 2013; MacKay, 2003).
But this equivalence between vI and the GBF inequality might serve as an introduction
to VI for physicists. Wu et al. (2019) implicitly use VI, by developing VANs and a rein-
forcement learning policy gradient algorithm (however, VI is not mentioned). Further,
for a system of size L, autoregressive neural networks require O(I?) forward passes to
sample a system configuration, making VANs intractable in larger systems. The use of
HVMs can be advantageous for statistical physics as these models can sample from a

system in O(L) time and yield results for larger systems.

Variational Inference. VI is equivalent to the GBF variational principle and requires
similar choices of a practitioner. The variational family q(z;») to approximate a model
must be chosen, in addition to a method to maximize the variational lower bound in

Equation (2.17).

The v1 literature provides several choices of variational family, such as a mean field, fac-
torized variational distribution with independent latent variables. Another choice of
variational family is the Bethe approximation, which constrains the variational distri-
bution to the polytope of mean parameters that captures correlations between any two
latent variables (Wainwright and Jordan, 2008). Some machine learning research focuses
on developing variational approximations that capture correlations between latent vari-

ables (Hoffman and Blei, 2015; Kingma et al., 2016; Maalge et al., 2016; Wu et al., 2019).
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Figure 3.1: Hierarchical variational models (HVMs, left) capture dependencies be-
tween latent variables, compared to the mean field variational family with inde-
pendent variables (right).

An example of a variational family that can model correlations between latent variables is
the VAN family (Wu et al., 2019), which uses autoregressive neural networks to parameter-
ize the variational distribution q(z; | z,, ..., z;_,). We explore the HVM class of variational

approximations (Ranganath, 2018).

The second choice required to employ V1 is how to optimize the variational lower bound
in Equation (2.17). The choice of variational family can limit the available optimization
techniques. For a simple variational family like the mean field approximation, it may be
possible to analytically evaluate the expectations in Equation (2.17). Then derivatives of
the variational bound with respect to the variational parameters » and manual calculation
can maximize the lower bound, as derived in Section 2.3.1. If more expressive variational
families are used (e.g. VANs with thousands or millions of variational parameters), the
analytic approach is infeasible. Stochastic optimization and automatic differentiation
software have been used to develop several approaches to computing gradients of the
variational lower bound, such as black box variational inference (Ranganath, 2018; Mo-

hamed et al., 2019).
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The choice of variational family q(z; ») and optimization method for maximizing the vari-
ationallower boundleads to a trade-oft intrinsic to V1. Simple variational approximations
such as the mean field family may be computationally feasible but inaccurate. The cost
of increased accuracy, say by using a structured variational approximation, is increased
computation. We illustrate the use of VI in statistical physics by comparing two choices
of variational approximation, HVMs (Ranganath, 2018) and vVANs (Wu et al., 2019). Many

other variational approximations can be explored in future work.

3.2 Hierarchical Variational Models

For studying models with correlated random variables, such as frustrated spin sys-
tems (Zdeborova and Krzakala, 2016), unstructured variational families such as the
mean field are insufficient. Hierarchical variational models (HVMs) are one way to model
correlated latent variables. An HVM is defined by placing a ‘variational prior’ on the
variational parameters » of the mean field variational family, in analogy to hierarchical
probabilistic models. By leveraging neural networks to parameterize the variational
prior, HVMs can capture complex dependencies between random variables (Ranganath,

2018).

For studying a model p(x, z), the variational family defined by an HVM is defined as
rn@:0) = [ a:0) [T ate | ). 6.

where qyx(z | v) = ], q(z; | »;) is the mean field ‘variational likelihood’ with parameters
v, and q(»; 6) is the variational prior with parameters 6. Figure 3.1 shows the graphical

model for HVMs as compared to the mean field family graphical model.

To use an HVM in VI, the variational lower bound must be optimized. But the variational
lower bound in Equation (2.17) requires calculating the entropy of the variational distri-
bution, and such integration in high dimensions can be intractable. As detailed in Ran-

ganath (2018), the entropy can be lower-bounded by introducing an auxiliary ‘variational
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Figure 3.2: The Markov blanket of a node in an Ising model consists of the node’s
nearest neighbors (nodes in the Markov blanket of the central node are shaded).
Conditioning on the Markov blanket of a node in a graphical model renders it condition-
ally independent of the rest of the variables. This enables building efficient variational
approximations.

posterior’ distribution r(v | z;$) with parameters ¢. This leads to the hierarchical evi-

dence lower bound,

£(6,¢) = Eq(ve)llog p(x,2) + logr(v | z;¢) — logq(z | v) —log q(»;6)], (3.2

and a stochastic optimization algorithm for this objective is developed in (Ranganath,
2018). VI with an HVM requires specifying the variational prior q(v; 6) and the variational

posterior r(v | z; ¢), then optimizing the hierarchical ELBO in Equation (3.2).

Specifying an HVM with Normalizing Flows. We study several choices of variational
prior and recursive variational posterior. One choice of variational prior q(v; ) is an in-
verse autoregressive flow (Kingma et al., 2016). If the variational posterior r(v | z;¢)
is chosen to be a masked autoregressive flow (Papamakarios et al., 2017), the analytical
torms of these flows are equivalent. These choices lead to a complexity of O(L) for sam-
pling latent variables in a system of size L. (This is because the noise used to sample from
the variational prior can be drawn in parallel.) HvMs should therefore be faster than VAN

approximations in large systems: the autoregressive requirement in VANs leads to a com-
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Figure 3.3: Hierarchical variational models (HVMs) scale to statistical physics mod-
els with millions of random variables, with over 100x parameter savings. The free
energy is reported (the variational lower bound yields an upper bound on the free en-
ergy). The HVM variational approximations use 5400 parameters, while the VAN method
uses over 700k.

plexity of O(I?). A research question is whether the advantage in speed of HvMs leads to

a drop in accuracy that is too large to answer a statistical physics question.

Scalable HVMs using Ising Model Structure. Although HVMs with autoregressive
flows scale linearly, such variational approximations do not leverage the structure about
the statistical physics under study. For example, it is difficult to index random variables
so that nearest neighbors are grouped together when fed to an autoregressive model.
However, consider the Markov blanket of a random variable in the Ising model—it con-
tains all the information needed to render a variable conditionally independent of the
rest of the model. The Markov blanket of a node in an Ising model consists of a node’s
nearest neighbors and is shown in Figure 3.2. This means that an autoregressive model is
overparameterized. For example, the last variable to be fed to the model depends on all
the previous in an autoregressive model, whereas an efficient model might only consider
nodes in a Markov blanket. A convenient way to build this structure into an HVM would
ensure efficient use of information from nearest neighbors in the Ising model. One way
to formalize this problem structure is with convolutional neural networks (LeCun et
al., 2015). We parameterize the variational prior and recursive posterior with real non-

volume preserving (REALNVP) transformations using a convolutional neural network ar-
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Figure 3.4: Hierarchical variational models (HVMs) are faster than Variational au-
toregressive networks (VANs) (Wu et al., 2019) and scale to larger systems. The scal-
ing of both variational approximations is illustrated with the time taken per iteration
in Ising models. The HVM variational approximations use 5400 parameters and the VAN
method uses over 700k. The VAN approximation runs out of memory with 16384 random
variables, while the HVvM method scales to models with over 1M random variables.

chitecture (Dinh et al., 2017). Specifically, we parameterize the convolutional kernels to
mimic the Markov blanket shown in Figure 3.2: for every node, only its nearest neighbors

are conditioned on.

3.3 Empirical Study

To study the utility of VI tools for statistical physics systems, we compare HVMSs to VAN
approximations (Wu et al., 2019)." We use the same benchmarks as in Wu et al. (2019):
the models of Ising and Sherrington-Kirkpatrick. We evaluate variational inference
methods by assessing whether they lead to lower estimates of the free energy of a model.
(Lower is better, as the free energy in Equation (2.4) is proportional to the negative of

the variational lower bound in Equations (2.17) and (3.2).)

Experimental Setup. To assess whether HVMs outperform VANs in large systems, the
computational budget for the vI algorithm using both variational approximations was

set to 6 hours. All experiments were performed on NVIDIA Tesla Proo GPUs, and the

ICode is available at https://github.com/altosaar/hierarchical-variational-models-physics.
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reference implementation of VANs released in Wu et al. (2019) was used. VAN models
were unable to complete sufficiently many iterations in the allocated compute time, so
all experiments were run without annealing the temperature of the system. For calcu-
lating the free energy using HVMs, importance sampling (Owen, 2013) was used with an
HVM as the proposal (for VANs, the increased cost of sampling prohibited drawing enough
samples for low-variance importance sampling estimates, so Monte Carlo estimation was
used). In HVMs, variational approximations that accounted for problem structure using
REALNVP transformations outperformed autoregressive parameterizations, and we omit

these results.

Ising Model. For small systems, HVMs were more accurate than VAN models at lower
temperatures; at higher temperatures (such as the critical temperature), VAN models
were slightly more accurate. This could be because annealing was not used to fit VAN
models, and the randomness of the hierarchical latent variables in HVMs obviates the
need for annealing. In large systems (e.g. L = 128), VAN models failed to complete a
single iteration, while HVMs were able to complete many iterations (at the cost of some
accuracy). The trade-off between model size and computational cost was significant
between autoregressive choices of variational approximations in HVMs versus REALNVP
convolutional approximations. Figure 3.3 shows that convolutional models were able
to scale to models with over a million random variables, with only a slight decrease in
accuracy relative to VAN methods, and with 100 times fewer parameters. This is also
illustrated via the time per iteration for both a VAN and HVM variational approximation

reported in Figure 3.4.

Sherrington-Kirkpatrick Model. The free energy estimates using VI with either
HVM or VAN approximations are plotted in Figure 3.5 for the Sherrington-Kirkpatrick
model. HVM approximations outperformed VAN approximations, and scaled to larger
systems where the O(I?) cost of sampling from a VAN prohibited even a single itera-

tion.
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Figure 3.5: Hierarchical variational models (HVMs) scale to larger systems than
variational autoregressive network (VAN) models (Wu et al., 2019) when fit to the
Sherrington-Kirkpatrick model using variational inference. (Lower is better, as
the variational lower bound yields an upper bound on the free energy) For the system
with N = 4096 variables the VAN method completed fewer than ten iterations, and with
N = 16384 did not complete a single iteration.

3.4 Discussion

The GBF inequality holds for quantum systems (Feynman, 1972; Feynman, 2018), and ap-
plying vI and HVMs to quantum systems is a direction for future work. Physics tools
(such as V1 in its original incarnation) have been useful in machine learning (Bamler et
al., 2017), and we hope the reverse holds—that tools from machine learning such as vI
and HVMs continue to find use in statistical physics. Further scaling HVMs to statistical
physics models where system size is abottleneck is a goal of future work, especially in set-

tings relevant to medicine, such as in protein folding or drug screening problems.

31



Chapter 4

RankFromSets: Scalable Set
Recommendation with Optimal

Recall

N the previous chapter, we built scalable and performant probabilistic mod-
@I@ els of likely configurations of interacting atoms in statistical physics systems.
% @ Modeling choices were guided by the structure of the underlying patterns of
interaction between random variables. As another case study, we turn to recommender
systems in this chapter, where the core problem is to model which items a user is likely
to interact with. By building the structure of individual datapoints into a probabilistic

model of user interaction, and considering the goals of the recommendation task, we de-

velop a scalable, accurate framework for recommending items with attributes.

4.1 Introduction

Classical recommender system datasets contain a matrix where each row is a user and
each column is an item. Each entry in the matrix indicates whether or not a user con-

sumed an item. Modern applications often gather rich side information about items in
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Attributes Users

Items Pizza Eggs Taco Salad Avocado Chicken Sardines Beer Coffee |1 2 3 4 5
Morning Pizza  ® * ° ® ®
Dinner Pizza hd o b b i
Small Salad s ® * o *
Big Salad ° . . . ° ° o
Taco . ° . . .
Fish Taco o i i i

Table 4.1: An example of the data we focus on, where tagged items are recommended
to users based on both item attributes and items users have consumed in the past. This
example dataset of meals contains meals with different foods (left) and users log which
meals they ate (right). The goal is to leverage the attributes to recommend items to users.

the form of a set of attributes or tags. Item attributes provide valuable side information
for recommender systems. With a large number of items or a sparse user-item matrix,

attribute information is necessary for good performance.

We are motivated by a specific dataset with these properties: a dataset of 55k users log-
ging 16M meals using the Loselt! diet tracking app. Table 4.1 shows the kind of data
logged by users, where each row is an item (meal), each left-hand column is an attribute
(food), and each right-hand column is a user. The food attributes can clearly inform rec-
ommendations: User 1 does not log meat, User 4 is omnivorous and undiscriminating,
and User 3 mostly eats salads. In the Loselt! data, there is a massive number of possi-
ble items to recommend: there are 12M unique meals, composed of subsets of 3M foods.
Meals containing only a few foods, or those ordered at chain restaurants, may be logged
by many users. But these represent a small proportion of the meals people actually eat,

so along tail of meals are logged by single users.

Modeling item attributes in these non-standard recommender systems is not straight-
torward. Popular ways to use item attributes like multiple matrix factorization (Wang
and Blei, 2011; Gopalan et al., 2014) struggle when the attribute vocabulary or number of
items is large. Conversely, simple models are computationally tractable but risk losing
the ability to capture nonlinear patterns of user consumption. For instance, a user may
enjoy meals tagged with foods A and B, B and C, or A and C, but not all three. Finding the

right balance between scalability and flexibility is therefore a primary goal.
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Even when a model can be scaled, it may not be clear how its training procedure con-
nects to the recommender system evaluation metric. A matrix factorization method
might minimize mean squared error when the recommender system is evaluated on re-
call. While it is plausible that minimizing mean squared error will improve recall, the
connection between the two is implicitly assumed in many methods. Ideally, a recom-

mender system should have an objective that matches its evaluation metric.

This paper proposes RANKFROMSETS (RFS), a class of principled, scalable models for rec-
ommending items with sets of attributes. RFS casts the recommendation problem as bi-
nary classification. Given a user and an item, RFS treats attributes as features and classi-
fies whether or not the item is likely to be consumed by the user. RFS learns embeddings
for each user and attribute; each item is represented as the mean of its attribute embed-
dings. To scale to large datasets, we develop an RFS method that is trained using negative

sampling of random items that are unlikely to be consumed.

RFS enjoys two benefits from framing the recommendation problem as classification.
First, the RFS classification objective function is directly tied to recommender recall: we
show that a classifier with zero worst-case error achieves maximum recall. Second, RFS
is provably flexible enough to learn any class of recommendation model based on set-
valued side information (including multiple matrix factorization). This generality makes

RFS a natural drop-in replacement for many specialized models in the literature.

We study the performance of the negative sampling RFS model on a semi-synthetic
benchmark dataset and the Loselt! dataset. The semi-synthetic paper recommen-
dation dataset consists of 65k users clicking on 636k papers posted to the arXiv; the
attributes of each paper are the unique words in its abstract. We then apply the method
to the Loselt! dataset to make out-of-sample meal recommendations. In both cases,
the RFS method outperforms the state of the art in terms of recall. In addition to good
performance, the RFS model learns interpretable embeddings that intuitively capture

the structure of the underlying data.
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Figure 4.1: RANKFROMSETS trained on arXiv reading behavior clusters re-
searchers by their most frequently-read arXiv category (best viewed on a screen).
RFS is trained to recommend items using their attributes (words in the abstract). t-
SNE (Maaten and Hinton, 2008) is used to visualize the user embeddings 6, in the inner
product regression function in Equation (4.2). Each marker represents auser embedding;
its color represents a user’s most-read arXiv category. Unique colors are determined us-
ing the most-read categories across the arXiv, and colors are assigned according to the
arXiv ontology. RFS captures usage patterns, as fields of study are related by patterns of

reading behavior across neighboring fields (e.g. stat.ML and cs.IT).
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4.2 RankFromSets

RANKFROMSETS (RFS) is a class of recommendation models that recommend items with
attributes to users. Letu € {1,..,N}beauser,m € {1,..,M} be anitem, and y,,,, € {0,1}
be a binary indicator where 1 indicates user u consumed item m. For each item m, there
is an associated set of attributes x,, € {0,1}"! from a vocabulary of V attributes. The
observed data is a collection of user-item interactions {(u, m)} and the sets of attributes

associated with items {x,,}.

‘We assume that a recommendation model is given a budget of K recommendations to be
made for each user. In response, the recommender system produces a list of K distinct
recommendations r,, = (¥, ..., ,x) for each user. The goal of the recommendation task

in this paper is to maximize the expected Recall@K,

(4.1

Recall@K = E, lMl ,

Zmyum

with the expectation over users in the empirical distribution D.

‘We combine three techniques to maximize Recall@K with RFS. First, we cast recommen-
dation as a classification task. Second, we learn user- and attribute-level embeddings.
Statistical strength is shared between items with similar attributes by representing items
as the mean of their attribute embeddings. Third, we scale RFS to large datasets using a

stochastic optimization-based negative sampling training procedure.

RFS casts the recommendation problem as a classification task. Given a user-item pair
(u, m) and regression function f, RFS learns to predict the probability that item m will be

consumed by user u:

p(yum =1|um)= o (f (U, xp)) ,

where x,, is the set of attributes of item m and o is the sigmoid function. Recommenda-

tions made by RFS are the maximum likelihood set formed by ranking a set of items for
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a user according to the model f(u, x,,). We motivate treating recommendation as classi-

fication with the following observation.

Proposition 1. Let u € U be a user, m € M be an item, and y(u, m) € {0,1} be an indicator
of whether user u logged item m. Let & be the worst-case error for binary classifier y(u, m) on

any (u, m) pair drawn from the data D,

€= max 1[9(u,m)# y(u,m)] .

(u,m)ed

A binary classifier with zero worst-case error (€ = 0) maximizes recommendation recall.

Proof A model with zero worst-case error is a perfect classifier, assigning greater prob-
ability to data with positive labels than to data with negative labels. In other words, it
ranks positive examples above negative examples. Recall@K is measured by the frac-
tion of items with positive labels in a ranking returned by the model. In a classifier that
achieves zero worst-case error, positively-labeled datapoints must be ranked higher than

other datapoints, maximizing recall. O

Proposition1is simple, but conceptually important. Under the assumption that a perfect
classifier exists, a consistent method for learning a classifier will be a consistent method
for learning a recommendation system that targets expected recall. Put another way,
recall is inherently binary: a model does or does not recall an item; an item is or is not
in the top K recommendations in the numerator of Equation (4.1). So the best one can
hope to do if recall is used to assess recommendation performance is to train a binary
classifier. In practice, as with any regression method, a perfect classifier is unachievable.
Proposition 1 is a guiding principle rather than a finite-sample guarantee of maximal per-
formance. As we show in Section 4.4, the classification approach of RFS performs well in

practice.

For recommending items with attributes, Proposition 1 says that building a classifier such

as RFS is optimal if we measure recommendation performance with recall. To parame-
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terize the RFS classifier, a regression function f(u, x,,) is needed. A straightforward pa-
rameterization is an inner product,

1

fuxp,) = 611— Z 5] + 8(xXp) | + h(xp,) . (42)

|xm| jexm

Each element in the inner product regression function in Equation (4.2) has an intuitive
interpretation. The user embedding 6, € R? captures the latent preferences for user u.
This captures the individual-level tastes of a user and is analogous to the user preference
vector in classical collaborative filtering or the row embedding in matrix factorization.
The attribute embedding 3 € RY is the latent quality conveyed through item m having
attribute j. (The set x,, contains only attributes with x,,,; = 1. Attributes that are not as-
sociated with item m are ignored.) The item embedding function g(x,,) € RY represents
qualities not conveyed through the set of item attributes. This term in the regression
function enables collaborative filtering by capturing unobserved patterns in item con-
sumption such as popularity. We describe how to construct this function below. The
scalar item intercept function h(x,,) € R makes an item more or less likely due to avail-

ability.

To define scalable item embedding and item intercept functions, note that the parame-
terization of the item embedding function g(x,,) depends on the size of the data. If the
number of items is small, g can function as a lookup for unique intercepts for every item.
However, if the number of items is so large that unique item intercepts lead to overfit-
ting, a scalable parameterization of item embeddings g can be defined using additional
information about every item. For example, if the data consists of foods in meals, we
can define a meal intercept as the mean of food intercepts, yielding a scalable item inter-
cept function. The item intercept function h(x,,) that maps item attributes to scalars is

constructed in the same way. We study both of these choices in Section 4.4.

The inner product regression function in Equation (4.2) has several benefits. It requires

computing a sum over only the attributes with which each item is associated. This en-
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Query Item

| Nearest Item by Cosine Similarity

"Two scoops of Raisin Bran cereal, organic Mo-
roccan green tea, almond milk, light honey,
tap water, large banana, large strawberries

Vita Bee bread, salted butter, fresh medium
tomatoes, large fried whole egg, small banana

Iceberg lettuce, cantaloupe cubes, diced hon-
eydew melon, cherry tomatoes, olives, dry-
cooked unsalted hulled sunflower seed ker-
nels, chopped hard-boiled egg, cucumbers,
dried cranberries, fat-free ranch dressing

Green leaf lettuce, chopped sweet red bell
peppers, crumbled feta cheese, large hard-
boiled egg, chopped cucumber, oil-roasted
salted sunflower seeds, sliced radishes, sliced
strawberries, pitted Calamata olives, fat-free
balsamic vinegar

Boston roast pork, mackerel, artichoke hearts,
spinach, pimiento-stuffed Manzanilla olives,
carrots, mushrooms, peppercorn ranch dress-
ing

Broiled top round steak, tomatoes, cucumber,
baby yellow squash, zucchini, black olives, ex-
tra virgin olive oil

Meatloaf with tomato sauce, chopped sweet
red bell peppers, extra virgin olive oil, cooked
asparagus spears, sweet potatoes, orange, can-
taloupe cubes

Chicken breast, breadcrumbs, fresh tomatoes,
shredded green leaf lettuce, extra virgin olive
oil, spinach, choppedyellow onion, sweet large
yellow bell peppers, whole mushrooms, chili
peppers, vinaigrette

Ciabatta bun, cooked skinless chicken breast,
fresh baby spinach, shredded iceberg lettuce,
shredded mozzarella cheese, ketchup, frozen
yogurt bar

Small whole wheat submarine roll, broiled
round roast beef, roasted light turkey meat
without skin, fresh medium tomatoes, honey
smoked ham, shredded iceberg lettuce, sliced
mozzarella cheese

Table 4.2: RANKFROMSETS trained on food consumption data provides diverse
meal recommendations. RFS with Equation (4.4) is fit to data from a diet tracking app;
items are meals and attributes are the ingredients in the meal. Meals are represented
the average of their attribute embeddings, and cosine similarity between meal represen-
tations is used to find the nearest neighbors of meals (user-level information cannot be
shown as this is personal diet data). RFS reveals eating patterns: for example, the second-
last query meal is a mix of meat, vegetables, and fruit, and the nearest neighbor meal is
a different meat with a side of salad; the last query meal is a sandwich, and its nearest
neighbor is also a sandwich with different ingredients.

ables RFS to scale to large attribute vocabularies where traditional matrix factorization
methods are intractable. Second, the embed-and-average approach to set modeling is
provably flexible as we show later. We now describe deep variants of RFS and detail how

RFS can approximate other recommendation models.

The RFS inner product regression function in Equation (4.2) is a log-bilinear model. But
there are several other choices of regression function, and we draw on the deep learn-

ing toolkit for classification to build two other example architectures. With finite data
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and finite compute, one architecture may outperform another, or prove insufficient to
capture patterns in user consumption. (Later, we show that all architectures are equiva-
lent under fewer assumptions.) First, as an alternative to the log-bilinear model in Equa-

tion (4.2), we can use a deep neural network as a regression function:

1

"X

fwxy) =66, D B glem) | + h(xp), (4.3)

JEXm

where the deep network ¢ has weights and biases and takes as inputs the user embed-
ding, sum of attribute embeddings, and item intercept. Such a neural network can rep-
resent functions that may or may not include the inner product in Equation (4.2); ex ante,
it is unclear whether a finite-depth, finite-width neural network can represent the inner

product.

Another regression function for RFS is a combination of Equations (4.2) and (4.3), using
an idea borrowed from deep residual networks for image classification (He et al., 20106).
In this architecture, a neural network ¢ with the same inputs as in Equation (4.3) learns

the residual of the inner product model:

1

ATl =
f(u’ xm) - eu |xm|

2 Bi+8lem) |+ 6+ h(xp). (4.4)
Jj€xm

The choice of regression function in RFS depends on the data. On finite data, with fi-
nite compute, one parameterization of RFS will outperform another. To demonstrate
this, we simulated synthetic data from the same generative process RFS employs with a
ground-truth regression function (a square kernel), and found that the residual and deep
parameterizations outperformed the inner product architecture. These results are in-
cluded in Section 4.7.4, and motivate exploring other architectures than the three exam-

ples here.

Stepping back from the setting of finite data and compute, a bigger picture emerges,

which reveals the choice of regression function in RFS does not matter. We show that any
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RFS architecture is sufficiently flexible to approximate recommendation models that op-
erate on set-valued input. We define permutation-invariant models before deriving this

result.

The regression function f in RFS operates on set-valued input: the unordered collec-
tion of item attributes x,,. A set is, by definition, permutation-invariant: it remains
the same if we permute its elements. Functions that operate on set-valued inputs must
also be permutation-invariant. RFS is permutation-invariant; the set of attributes as-
sociated with an item enter into Equations (4.2) to (4.4) via summation. Other exam-
ples of permutation-invariant recommendation models are multiple matrix factoriza-
tion, models based on word embeddings, and permutation-marginalized recurrent neu-
ral networks. These models are shown to be permutation-invariant in Section 4.3 and
evaluated in Section 4.4. We now show that RFS can approximate other permutation-

invariant recommendation models such as matrix factorization.

Proposition 2. Assume the vocabulary of attributes (set elements) is countable, |V| < |Ny|. Then

RFS can approximate any permutation-invariant recommendation model.

The proof follows directly from Theorem 2 in Zaheer et al. (2017) and we will not restate
it here. (The only change to the proof is the mapping from set elements to one-hot vec-
tors,c: V = {0,1}" to yield a unique representation of every object in the powerset.)
Proposition 2 means that any of the parameterizations in Equations (4.2) to (4.4) is flexi-
ble enough to approximate other principled recommendation models that leverage item
attributes, such as multiple matrix factorization (Gopalan et al., 2014; Wang and Blei,

2011).

The parameters for RFS are learned by stochastic optimization. Denote the full set of
RFS model parameters by y, and let D,, be the empirical data distribution forauser. Let 2,

be a reweighting parameter. The per-user maximum likelihood objective for RFS is

[’(Ya )lu) = [Eu[[Em~I>u|yum=1 [log p(yum =1 | xm”’)] + Au[Ek~Du|yuk=0 [log p(yuk =0 | Xks 7’)]]
(4.5)
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In traditional regression, altering the ratio of positive to negative examples by reweight-
ing leads to inconsistent parameter estimation. The inconsistency stems from the ran-
domness in the labels, given the features. However, Recall@K assumes that each user,
item attribute set pair (u, x,,,) uniquely determines whether the item was consumed or
not (the label y,,,,). Here, all reweightings produce the same result. This means that for
any negative example weight 1,,, the learned model will be the same. In practice we set
A, to balance the positive and negative examples for each user. We use stochastic opti-
mization to maximize Equation (4.5), and describe two negative sampling schemes that

are dependent on the choice of evaluation metric.

Negative samples can be drawn uniformly over the entire corpus of items, which we de-
fine to be corpus sampling. If the item set is large, this can be an expensive procedure.
This negative sampling scheme leads to objective functions used in other recommender

systems (He et al., 2017; Song et al., 2018).

On large datasets, it is infeasible to calculate Recall@K for evaluation, as this requires
ranking every item for every user (e.g. in Section 4.4 we study a dataset with over 10M
items). We define a scalable evaluation metric based on recall, and describe how it leads

to a natural choice of negative sampling distribution.

Sampled recall is defined as follows. Consider held-out datapoints with positive la-
bels, (Xp, Yum = 1). For every held-out datapoint, K — 1 datapoints with negative la-
bels (xi, y,x = 0) are sampled from the rest of the held-out data, which together yield a
set of K datapoints. A recommendation modelisused to rank the K datapoints #,, ..., fk.
SampledRecall@k is the fraction of the K held-out datapoints that the model ranks in

the top k:
1
SampledRecall@k = E[E“m [ Z yur] . (4.6)

refry,.ryk}

The expectation is over users and items in the held-out set of datapoints. This evaluation
metric is scalable: instead of using a model to rank every item, SampledRecall@k requires

ranking only K items. Sampled recallis 1if k = K, as the held-out datapoint with y,,,, = 1
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is in each list of K datapoints to be ranked. This metric is used in recommender systems

when the number of items is large (Ebesu et al., 2018; Yang et al., 2018).

When sampled recall is used as an evaluation metric, batch sampling is a natural way to
draw negative samples. Sampled recall is calculated on items drawn from other user’s
data. We define batch sampling as generating negative samples by permuting mini-batch
items. Besides corresponding to the sampled recall metric, this technique is memory-

efficient, as it requires that only the current mini-batch be in memory:

In addition to scalability, both negative sampling procedures above have the advantage
of implicitly balancing the classifier. As shown in Veitch et al. (2019), using stochastic
gradient descent with negative sampling is equivalent to a Monte Carlo approximation

of the reweighted (balanced) classification loss.

4.3 Permutation-invariant Recommender Models

Proposition 2 shows that RFS can approximate permutation-invariant recommendation
models. We describe several common recommendation models and show that they are

permutation-invariant, before comparing their performance to RFS in Section 4.4.

Gopalanetal. (2014) develop a probabilistic matrix factorization model of user consump-
tion data. Collaborative topic Poisson factorization (CTPF) models user preferences us-

ing a generative process,
1. Document model:
(a) Draw topics Byx ~ Gam(a, b)
(b) Draw document topic intensities 6, ~ Gam(c, d)
(c) Draw word count wy,, ~ Poisson(6] B,,).
2. Recommendation model:

(a) Draw user preferences 7, ~ Gam(e, f)
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(b) Draw document topic offsets ey ~ Gam(g, h)
(c) Drawr,4 ~ Poisson(nX (6, + €4)).

To show that CTPF is permutation-invariant, consider the Poisson likelihood function
over words wy,. Conditional on the latent item representation 6; and latent word rep-
resentation 3, every word in the document wy, is independent; the joint probability of

words in a document factorizes:

p(wa | 6a:8)= I Pwayl64:B0)- (4.7)

WgapEWq

CTPF makes predictions using expectations under the posterior. The posterior is propor-
tional to the the log joint of the model, and the attributes of items (words in documents)
enter into the model only via the above product. The product of the probability of words
in a document is invariant to a reordering of the words in the document, and therefore

CTPF is permutation-invariant.

Word embedding models (Mikolov et al., 2013) can be used as recommendation models
if the embeddings are learned using a modified context window. For an item with at-
tributes x,,, let the context window for attribute j € x,, be the set of other attributes
of the same item j' € x,,, : j' # j. To recommend items using this model of attributes ;
tor j € V, item embeddings are computed as the average of their attribute embeddings.
Users are represented as the average of the embeddings of the items they consume, and
recommendation is performed using the cosine similarity of user and item embeddings.
This is a permutation-invariant model, as the output of the model depends on the sum

of attribute embeddings (summation is invariant to permutation).

StarSpace is also an embedding model and represents users as a sum over a user’s con-
sumed items’ attribute embeddings (there is no explicit user embedding). In contrast to
the word embedding model, StarSpace is trained on a classification objective with neg-

ative samples drawn from the the set of items (Wu et al., 2018). As model predictions
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depend on sums of attributes, StarSpace is a permutation-invariant recommendation

model.

We next consider LightFM (Kula, 2015), a permutation-invariant recommendation
model. We show that if the Bayesian Personalized Ranking (BPR) objective (Rendle
et al., 2009) is used, LightFM is an instance of RFS. ' Although the BPR objective is
designed for ranking, models trained with it can be used to construct classifiers. The

BPR objective is

logo (f(u, x;7) — f(U, X3 %))

where m corresponds to a positive label y,,,,, = 1, k corresponds to a negative label y,, = 0,
and f is parameterized as in RFS (Kula, 2015). A ranking function f optimizes the BPR ob-
jective if f — oo for the positive example and f is constant for the negative example; or,
if f is constant for the positive example and f — —oo for the negative example. In either
case, aconstant can be added toyield a perfect classifier from the ranking function f (pos-
itive examples are ranked higher than negative examples in the optimal ranking, so there
exists such a constant). That we can construct a classifier from the BPR objective means
that Proposition 1 applies: permutation-invariant models such as LightFM, trained with

the BPR objective, are instances of the RFS class of recommendation models.

The regression function f in RFS can also be parameterized using a recurrent network,
as in Bansal et al. (2016). Such a recommendation model can be made permutation-
invariant if averaged over permutations of attributes fed to the network. Attributes are

treated as a sequence and the marginalization is over these permutations,

POum =11 %m) = = S (@@ (Brry - Bxr)}) 4.8)

EEMIE

“The LightFM paper (Kula, 2015) uses a logistic objective to which Proposition 1 applies. LightFM with
the BPR objective is unpublished but implemented in code released by the author. For completeness, we
studied LightFM with both objectives to ensure its performance is equivalent to RFS when the BPR objective
isused.
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Here §; are attribute embeddings, 7(x,,) denotes the set of all permutations of the at-
tributes x,,, and ¢ is the output of a recurrent neural network architecture (Bansal et al.,

20106) projected to a scalar.

4-4 Empirical Study

We study RFS on two datasets and tasks. The first data consists of researcher reading
behavior from the arXiv; the semi-synthetic task is to recommend documents to sci-
entists. The second is crowdsourced food consumption data from a diet tracking app,
and the task is meal recommendation. On both benchmarks, models in the RFS class
outperform several baseline methods. The permutation-invariant models we compare
to are described in Section 4.3, and the hyperparameters used are described in Sec-
tion 4.7.1. To show the relative ease of implementation of RFS we give example code in

Section 4.7.5.2

Recommending Research Papers. We benchmark RFS on data of scientists reading
research papers on the arXiv, where the goal is to recommend papers to scientists. This
is a semi-synthetic task: it uses real-world data, but the item side information (article ab-
stracts) is not set-valued. Nevertheless, document recommendation is a standard bench-
mark to study whether RFS performs well in settings outside its target purview of meal
recommendation. The arXiv data represents one year of usage (2012) and consists of
65k users, 636k preprints, and 7.6M clicks. For evaluation, we match (Gopalan et al.,
2014), using the same test and validation splits and the same set of held-out 10k users. As
in (Gopalan et al., 2014) we compute precision in addition to recall. The held-out valida-
tion and test splits each consist of 20% of the clicks and 1% of the documents. In-matrix
documents refer to documents that have clicks in the training data, while out-matrix or

cold-start documents have no previous clicks.

2Full source code is available at https://github.com/altosaar/rankfromsets for reproducibility.
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Figure 4.2: RANKFROMSETS outperforms collaborative topic Poisson factoriza-
tion (CTPF) (Gopalan et al., 2014) and other models on recommending arXiv papers
to scientists. The items are documents and the attributes are the unique words in the
abstracts. Recommendation performance is evaluated using both precision and recall to
match the evaluation in (Gopalan et al., 2014). The metrics are reported on training (in-
matrix) documents and cold-start (out-matrix) documents with no clicks in the training
set. All GRU and LSTM-based models in Bansal et al. (2016) performed an order of mag-
nitude worse, and these results are omitted (training details are in Section 4.7.1).

Figure 4.2 shows that models in the RFS class outperform others. RFS with the inner prod-
uct parameterization or LightFM with the BPR objective have identical performance (as
we showed, the BPR objective yields a classifier equivalent to RFS). These RFS models
outperform CTPF in terms of in-matrix recall by over 90%. RFS models also improve over
CTPF in terms of out-matrix recall, out-matrix precision, and in-matrix precision (for the
latter, only when the number of recommendations is greater than 30). The word embed-
ding model performs comparably to CTPF in terms of recall, and performs worse in terms
of precision. Recurrent neural network recommendation models were implemented fol-
lowing Bansal et al. (2016) and given access to full sequence information, unlike RFS. (The
permutation-marginalized version of these models in Equation (4.8) is evaluated on meal
recommendation where the order of foods in a meal does not carry information.) The

training details for the recurrent neural networks are in Section 4.7.1, but their perfor-
g 4.7.1, p
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mance was an order of magnitude worse than the other methods and these results are
omitted. The RFS regression function used is in Equation (4.2); the other parameteriza-

tions did not fit in GPU memory.

Qualitatively, RFS reveals patterns in usage of the arXiv. Figure 4.1 is a dimensionality-
reduced plot of the user embeddings that reveals connections between fields of study.
Scientists who focus on high energy physics, hep, neighbor specialists in differential ge-
ometry, math.DG; these areas share techniques. Machine learning researchers (stat.ML
readers) neighbor statisticians (math.ST readers), highlighting the close connection be-
tween these fields. Plots for document embeddings show similar patterns. This illus-
trates how RFS captures rich patterns of interaction between users and items, while ben-

efitting from information in the item attributes.

This experiment in recommending research papers also highlights a trade-off in compu-
tational budget and desired performance in recommender systems. As described in Sec-
tion 4.7.2, the recurrent neural network recommendation models in Bansal et al. (2016)
did not perform well with the computational budget allocated for all methods (one day
of compute on Tesla Proo GPUs). In further experiments, the performance improved
marginally with a larger computational budget of several days. Further research in this
domain might compare to transformer models (Vaswani et al., 2017; Devlin et al., 2019).
Transformers preserve sequence information, unlike RFS, although they require large
computational budgets to make accurate predictions. This means transformer-based
methods may present a different trade-off in recommendation performance than the re-

current neural networks we evaluated in this task.

Recommending Meals. We evaluate RFS on data collected from the Loselt! diet
tracking app. This app enables users to track their food intake to eat healthy. We use a
year’s worth of data from 55k active users. This corresponds to 16 M meals, where each
meal is comprised of a subset of 3M foods. To preprocess, we filter the vocabulary by

keeping words that occur at least 20 times in the food names, resulting in 9963 words. A
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Figure 4.3: RANKFROMSETS models outperform competitors in meal recommen-
dation in terms of sampled recall computed using Equation (4.6). Comparison
models are described in Section 4.3 (see Section 4.7.1 for hyperparameters). The
RFS regression functions f are defined in Equations (4.2) to (4.4) for the inner prod-
uct, neural network, and residual models, respectively.

meal is represented as the union of the sets of words occurring in the food names. For
evaluation, 1% of the items (meals) are held out for evaluating validation and test perfor-

mance respectively. We evaluate models using SampledRecall@K with K = 10.

Figure 4.3 shows the sampled recall: models in the RFS class outperform others, such as
permutation-marginalized recurrent neural networks and word embedding models. The
residual RFS model outperforms the RFS inner product parameterization (and the equiv-
alent LightFM model trained on the BPR objective). The code released with Gopalan
et al. (2014) or Wang and Blei (2011) did not scale to this size of data, despite sufficient
computing resources. This experiment further verifies Proposition 1: RFS models can

maximize recall.

Qualitatively, RFS learns an interpretable representation of items, as shown by nearest
neighbors of meals in Table 4.2. In this table, we display breakfast, lunch, and dinner
meals, alongside their nearest neighbors. We find that the nearest neighbors are also
breakfast, lunch, and dinner meals respectively, showing that the attribute embeddings
learned by the model can be used to explore qualitative patterns in the learned latent

space.
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CTPF, Gopalan et al. (2014)
StarSpace, Wu et al. (2018)
LightFM, Kula (2015)
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v
v

LK
€ < KK

CLLL KK & KKk
A
<
A A

<L K

v

Table 4.3: RANKFROMSETS recommends items using attributes, and is trained to
maximize the evaluation metric of recall. Most methods we highlight leverage item
attributes (Attributes); some require data in addition to the implicit feedback data of
user-item interactions (Implicit). Few methods are scalable, as most models that use item
side information require learning parameters for every item. Some models are invariant
to permutation of the attributes (Invariant), and some enjoy a loss function that is con-
nected to a recommender performance metric (Evaluation).

4.5 Related Work

We survey food recommender systems and recommendation models, focusing on mod-
els that leverage content information and scale to large numbers of users, items, and at-

tributes.

Existing food recommendation systems focus on healthy recommendation (Trattner and
Elsweiler, 2019a; Freyne et al., 2011; Khan et al., 20195 Yang et al., 2017), while RFS focuses
on the scalability challenge of meal recommendation. After training a recommendation
model, it is possible to filter the recommendations by nutritional information to nudge
users towards healthier eating habits (Elsweiler et al., 2017); such approaches can be used
to include nutritional information into RFS recommendations. When data is used in

tood recommender systems, it is usually recipe data (Irattner and Elsweiler, 2018); RFS
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is designed to recommend meals using crowdsourced food consumption data which may

accurately reflect user behavior (Trattner and Elsweiler, 2019b).

We highlight several themes in research on recommendation models. We describe
recommendation models that incorporate side information, models that recommend
through classification, and models that optimize proxies of ranking metrics. This re-
lated work is summarized in Table 4.3. We focus on deep learning-based and matrix
factorization methods to include side information in recommendation models. Item
side information can be modeled with deep representations or can be included in
content-based matrix factorization models as an additional matrix. Some deep learning
approaches scale to large datasets, but may not have objective functions tied to evalu-
ation metrics, or may require data beyond user-item interactions (Okura et al., 2017).
Content-based matrix factorization methods require learning parameters for every item,
and do not scale to data with large numbers of items (Wang and Blei, 2011; Gopalan et al.,

2014), whereas RFS scales and is tied to evaluation.

Deep Representations of Side Information. Deep learning-based recommendation
models incorporate side information in multiple ways (Zhang et al., 2019). For example,
items that have words as attributes can be represented using neural networks (Bansal et
al., 2016; Chen and Rijke, 2018) or embeddings (Wu et al., 2018). RFS uses both embed-
dings and deep learning techniques such as residual networks (He et al., 2016) to include
side information. Lian et al. (2018) use an attention mechanism to weight recommen-
dations according to available item and user side information, and Dong et al. (2017) use
denoising autoencoders to model side information in a deep recommendation model, but
these methods require fitting parameters for every item and hence cannot scale. An ex-
ample of a more efficient approach is the method in Chen et al. (2017), where embeddings
are jointly learned for users, items, and item text for recommendation, but this method
focuses on unsupervised pre-training of text representations. RFS is complementary to
such approaches, as the user, attribute, and item embeddings can be initialized using pre-

training. Deep structured semantic models are designed for document retrieval given
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query words (Huang et al., 2013; Palangi et al., 20106); it is unclear how to use this setup
tor recommending items with set-valued side information to users. There are several ex-
amples of ‘tag-aware’ or ‘tag-based’ deep recommendation models (Liang et al., 2018b;
Zuo et al., 2016), such as Xu et al. (2017), which focuses on data where users and items
have different attributes and uses autoencoders to learn user, item, and attribute repre-
sentations. Xu et al. (2017) uses a cosine similarity-based objective function which is not
tied to a metric used to evaluate recommendation performance, whereas RFS is tied to

recall as shown in Proposition 1.

Recommendation via Classification. The framing of recommendation as classifica-
tion has been around for a long time (Basu et al., 1998), and several works build deep
learning-based classifiers for recommendation (Covington et al., 2016; Cheng et al., 2016;
Guo et al., 2017; He et al., 2017). Covington et al. (2016) focus on scalable inclusion of
user and item attributes for video recommendation, Cheng et al. (2016) jointly train gen-
eralized linear models and deep neural networks for recommendation, while Guo et al.
(2017) use factorization machines to learn high- and low-order interactions of features.
Our work is complementary to these approaches: RFS focuses on scalable inclusion of
set-valued side information, and provides theoretical undergirding to these recommen-
dation models. We connect such models that rely on classification to optimal recall in
Proposition 1. And if a specific architecture developed in these works is a permutation-
invariant recommendation model, we proved that RFS is a universal function approxima-
tor (Proposition 2). So if performance is measured by recall, an RFS model can converge

to an optimal recommender.

Matrix Factorization with Side Information. While matrix factorization methods
perform well in recommending items that have consumption data in the training set (Hu
et al., 2008; Liang et al., 2016), they cannot recommend items that have not been con-
sumed in the training data. Including side information in matrix factorization enables

recommendation of these items with no consumption data. Shi et al. (2014) survey sev-
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eral matrix factorization methods that leverage side information. Gopalan et al. (2014)
develop a Bayesian matrix factorization model for recommending items based on side
information in the form of words in documents, and we compare RFS to this method in
Section 4.4. Wang and Blei (2011) develop a regression model that uses a topic model to
incorporate side information into recommendations. There are also several ‘tag-based’
or ‘tag-aware’ content-based matrix factorization models (Zhen et al., 2009; Loepp et
al., 2019; Bogers, 2018). Such content-based matrix factorization methods maximize
the conditional log-likelihood of the data (or a bound on the log-likelihood); optimizing
these objective functions may not optimize an evaluation metric. These methods are not
scalable to large numbers of items as they require learning unique parameters for every
item. Specifically, such content-based matrix factorization methods require learning a
matrix that has a row for every item. For items with attributes, it is often infeasible to
store this matrix in memory or exploit efficient coordinate ascent optimization schemes
that require processing this entire matrix. RFS, however, is designed to scale to tens of

millions of items, as we demonstrate empirically in Section 4.4.

Learning to Rank. The learning to rank literature includes several recommendation
models trained on objectives that approximate ranking-based evaluation metrics (Yu et
al., 2018; Liang et al., 2018a; Rendle et al., 2009; Song et al., 2018), and some of these
models include side information (Shi et al., 2012a; Shi et al., 2012b; Yuan etal., 2016; Ying
etal., 2016; Cao et al., 2017; Okura et al., 2017). Such approaches can require data in ad-
dition to the user-item matrix, such as per-item parameters, or might use models whose
output depends on the ordering of item attributes (making them infeasible for set-valued
side information). In Section 4.4, we show that the ranking-based BPR objective func-
tion (Rendle et al., 2009; Kula, 2015) is in the RFS class, so Proposition 1 can help frame
thisrelated work. Lietal. (2016) use an objective thatis in the same class as BPR, and other
work bounds the BPR objective (Zhang et al., 2018); these are also examples of RFS models
if a permutation-invariant architecture is specified and we study one such choice (Kula,

2015) in Section 4.4.
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4.6 Discussion

The task of recommending items with attributes is difficult for several reasons. It is un-
clear how to incorporate set-valued side information into models that scale to large num-
bers of items and attributes. In addition, existing recommendation models that leverage
item attributes (for example, content-based matrix factorization) are not directly tied
to evaluation metrics. We developed RFS, a class of scalable recommendation models
for items with attributes. Theoretically, we showed that optimizing the RFS objective
optimizes recall, and that RFS can approximate permutation-invariant recommendation
models including content-based matrix factorization. Empirically, models in the RFS
class outperform competing models and scale to large datasets, such as our motivating

problem of meal recommendation for 55k users who consume 16 M meals.

How well does binary classification perform for other ranking-based recommendation
metrics, such as non-discounted cumulative gain? Analyzing this question is more dif-
ficult, and we leave this to future work. For generalization theory, we conjecture that a
different loss function should allow a similar proof to Proposition 1. With sufficient data,
RFS can learn arbitrary distributions of users consuming items with attributes. But per-
formance on finite data can vary, and developing generalization theory for RFS remains

an open question.

47 Appendix

4.7.1  Empirical Study Hyperparameters

Experiments for RFS, LightFM, and recurrent neural network models are run on a cluster
with Tesla Proo GPUs using PyTorch; all other experiments are performed on a 20-core

computer.

Hyperparameters for Word Embedding Model and StarSpace. For the word em-

bedding model and StarSpace, we use the software packages released alongside the re-
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spective papers (Bojanowskietal., 2017; Wuetal., 2018) with recommended hyperparam-

eters, and grid search over embedding sizes of {128, 256, 512, 1024} for both datasets.

Hyperparameters for LightFM. Onboth datasets, LightFM with the logistic objec-
tive reported in Kula (2015) performs poorly and we omit these results. Kula (2015) does
not use the BPR objective in the paper; nevertheless, we study LightFM with the BPR ob-
jective (this variant is unpublished, yet implemented in the code released in (Kula, 2015))

and use the same hyperparameters as RFS for comparison.

4.7.2 Recommending Research Papers

Hyperparameters for RFS. We test the stochastic gradient descent algorithm with
and without momentum (Sutskever et al., 2013). We use a linear learning rate decay that
decays to zero in the maximum number of iterations, 200k. We performagrid search over
learning rates of {1, 5,10, 15, 25} and momenta of {0.5, 0.9, 0.95,0.99}. The minibatch size is
set to 2!°. We use a single negative sample per datapoint, sampled uniformly over the
entire dataset; such corpus sampling is defined in Section 4.2. As the number of items is
small relative to the larger diet tracking data, the item intercept function is simply a scalar
for every item, and the item embedding function learns item embeddings. To match the
hyperparameters in Gopalan et al. (2014), we set the dimensionality of user and item em-

beddings to 100. Evaluation is performed every 20k iterations.

Hyperparameters for Recurrent Neural Network Models. We implement the
model in Bansal et al. (2016) using PyTorch and match the hyperparameters where pos-
sible. We test gated recurrent unit (GRU) cells and long short-term memory (LSTM) cells
with the objective function in Equation (4.5). The model has access to full sequence
information, unlike RFS, as abstracts of research papers have meaningful sequence
information (marginalizing using Equation (4.8) would destroy information and de-
crease performance). The attribute embedding size is fixed to 100 to match the other

models and attribute embeddings are initialized to word embeddings pretrained on all
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636k document abstracts as in Bansal et al. (2016), using the word embedding imple-
mentation in Bojanowski et al. (2017). The first layer of the recurrent neural network
is bidirectional and of hidden size 400, the second layer is unidirectional and of hid-
den size 200, and dropout is used with the same settings as in Bansal et al. (2010).
Evaluation is performed every 20k iterations. We grid search over learning rates of
{1071,1072,1073,10%} with the Adam optimizer (Kingma and Ba, 2015) and batch sizes
of {64,128, 256, 512,1024,4096,8192}. As evaluation is much more expensive for sequence
models, we randomly select a subset of 100 users from the held-out set of 10k users.
If validation performance does not improve, we reload the best parameters and op-
timizer states, and divide the learning rate by half. In both experiments, LSTM cells

outperformed GRU cells.

4.7.3 Recommending Meals

Hyperparameters for RFS. The embedding size is set to 128. For the neural network
and residual models in Equations (4.3) and (4.4) the number of hidden layers is two, and
the number of hidden units is set to 256 with rectifier nonlinearities. The item embed-
dings g(x,,,), and item intercepts h(x,,), are computed as the mean of learned food embed-
dings and intercepts, respectively. We use the RMSProp optimizer in Graves (2013) and
grid search over the learning rates {1072,1073,107%,107°}. We use a batch size of 64 and
a single negative sample for every datapoint in a minibatch (batch sampling is defined in

Section 4.2). Evaluation is performed every 50k iterations.

Hyperparameters for Permutation-marginalized Recurrent Neural Networks.
We use the same settings as described in Section 4.7.2, but the data in this case has no
sequence information so we use Equation (4.8) to average predictions of the model in
Bansal et al. (2016) over permutations. Evaluation for sequence models is already pro-
hibitive, so for every item in a minibatch we sample a single permutation of attributes
to approximate the sum over permutations in Equation (4.8). We use a single negative

sample per datapoint (minibatch sampling), and set the embedding and hidden state
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sizes to 128. We use the Adam optimizer (Kingma and Ba, 2015) and grid search over
the same learning rates, learning rate decay, and batch sizes as in Section 4.7.2, with

evaluation every 1k iterations.

4.7.4 Generalization Simulation Study

Proposition 2 is a universal function approximation theorem in the regime of infinite
data. With finite data and a finite number of parameters, the optimal parameterization of
RFS is dependent on the data-generating distribution. From Figure 4.3, the inner product
RFS parameterization outperforms the neural network parameterization. We demon-
strate a simulated dataset where this order is reversed, to motivate the exploration of
novel architectures. Recall that observations of user-item interactions are generated by
a Bernoulli distribution with logit function f. We describe a choice of logit function f
that leads to the residual and deep architectures in Equations (4.3) and (4.4) outperform-
ing the inner product architecture in Equation (4.2) in terms of predictive performance.

We will release all code required to replicate this experiment.
1. For every user u: Draw user embedding 6, ~ Normal(0, I).
2. For every attribute j: Draw attribute embedding §; ~ Normal(0, I).
3. For every item m:
(a) Draw item topics 6,, ~ Dirichlet(c)
(b) Draw number of item attributes M ~ Poisson(1)
(¢c) Draw nonzero item attributes x,, ~ Multinomial(M, 6,,).
4. For every user, item: y,,,, ~ Bernoulli (y,,,,; o(f(6,, Xp,))-

The logit function f is the square kernel:
2

f(eu’xm)z QTL Z ﬁ]

u
|xm| jexm
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Inner product Deep Residual

Recall o0.29+0.15 0.32 +0.14 0.33 £0.18

Table 4.4: A simulation study demonstrating that the choice of parameterization
of RANKFROMSETS is data-dependent. We report the in-matrix recall averaged over
100 users, over 30 replications of the simulation. The residual model in Equation (4.4)
outperforms the deep model in Equation (4.3) and the inner product model in Equa-
tion (4.2).

The output of f is standardized across users and centered at 7 to achieve sparse user-item

observations.

For this simulation study, we set the Dirichlet parameter to be a = 0.01 and the Poisson
rate to be 1 = 20. We generate data for 1k users, 5k item attributes, 30k items, and hold
out 100 users for each of the validation and test sets. The embedding sizes are fixed to 100,
and for parameterizations with neural networks two hidden layers are used with rectifier
nonlinearities. The hidden size of models with neural networks is chosen so the total
number of parameters matches the number of parameters in the inner product model.
We fix the momentum to 0.9 (Sutskever et al., 2013) and grid search over stochastic gra-
dient descent learning rates of 10,1, 0.1,0.01 and over two learning rate decay schedules.
The first linear learning rate decay goes to zero over 100k iterations, while the second
divides the learning rate by 10 if the validation in-matrix recall does not improve (evalu-
ation is performed every 500 iterations). We run the grid search on one instance of data
generated from this model. We regenerate data 30 times and average results over these
synthetic datasets, using the best performing hyperparameters for each model trained

on the first instance.

The results in Table 4.4 demonstrate that the residual model outperforms both the deep
and inner product architectures for data generated by the above generative process. This
shows that the choice of architecture in RFS is data-dependent and leads to considering
when a RFS recommendation model supports generalization. To ensure that the model

does not overfit as new users or items are included in the training data, we need to com-
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pare the number of parameters to the number of datapoints. A model with parameters
the size of the training data can overfit by memorizing the training data. For generaliza-
tion to be possible, overfitting can be avoided if the number of parameters grows slower
than the size of the data. The technical backing for this comes from asymptotic statistics
and the concept of sieved likelihoods. Specifically, the maximum likelihood estimation
procedure with the objective function in Equation (4.5) can be replaced by maximization
of a sieved likelihood function. The ‘sieve’ refers to filtering information as the number
of parameters (in this case, the number of parameters in user and item representations)
grows with the number of observations. The sieved likelihood function enables the anal-
ysis of asymptotic behavior as the number of users grows U — oo and the number of items
grows I — oo. An example of a technique to grow the number of parameters in a way that

supports generalization is given in Chapter 25 of Vaart (1998).
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4.7.5 Code

We give an example implementation of RANKFROMSETS with the inner product regres-

sion function in Equation (4.2) in python with the PyTorch package. This implemen-

tation is easy to port to new applications and achieves state-of-the-art results in Sec-

tion 4.4.

import torch

import data

class InnerProduct(torch.nn.Module):

def __init__(self, n_users, n_items, n_attr, emb_size):

super().__init__QO

self.user_embeddings = torch.nn.Embedding(n_users, emb_size)

self.attribute_emb = torch.nn.EmbeddingBag(n_attr, emb_size)

self.item_embeddings = torch.nn.Embedding(n_items, emb_size)

self.intercepts = torch.nn.Embedding(n_items, 1)

def forward(self,

user_emb =
attr_emb =

item_emb =

self.
self.
self.

users, items, item_attributes, offsets):
user_embeddings(users)
attribute_emb(item_attributes, offsets)

item_embeddings(items)

logits = (user_emb * (attr_emb + item_emb)).sum(-1)

return logits + self.intercepts(items).squeeze()

train = data.load(batch_size=2 ** 16) # negative labels in last half of every batch

model

InnerProduct(train.n_users, train.n_items, train.n_attr, 100)

optim = torch.optim.SGD(model.parameters(), learning_rate=15.0)

loss = torch.nn.BCEWithLogitsLoss()

labels = (torch.arange(2 ** 16) < (2 ** 16 / 2)).float()

for batch in train:

model .zero_grad()

logits = model(*batch)

L = loss(logits, labels)

L.backward()

optim.step()
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Chapter 5

Proximity Variational Inference

3 — REVIOUSLY, Chapters 3 and 4 highlighted how consideration of the problem

&

g

at a higherlevel, in an inference algorithm that can be re-used across probability models?

Dé ; I structure enabled efficient probabilistic modeling solutions to applied ques-

tions in physics and recommender systems. Can problem structure be of use

We develop proximity variational inference in this chapter, which enables variational in-
ference to leverage information about variational approximations during optimization

to improve the accuracy of inference.

5.1 Introduction

Variational inference (VI) is a powerful method for probabilistic modeling. VI uses
optimization to approximate difficult-to-compute conditional distributions (Jordan
etal., 1999). In its modern incarnation, it has scaled Bayesian computation to large data
sets (Hoffman et al., 2013), generalized to large classes of models (Kingma and Welling,
2014; Ranganath et al., 2014; Rezende and Mohamed, 2015), and has been deployed as a
computational engine in probabilistic programming systems (Mansinghka et al., 2014;

Kucukelbir et al., 2015; Tran et al., 2016).
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Despite these significant advances, however, v1 has drawbacks. For one, it tries to itera-
tively solve a difficult nonconvex optimization problem and its objective contains many
local optima. Consequently, VI is sensitive to initialization and easily gets stuck in a poor
solution. We develop a new optimization method for vI and show that it finds better op-

tima.

Consider a probability model p(z,x) and the goal of calculating the posterior p(z | x).
The idea behind V1 is to posit a family of distributions over the hidden variables q(z; 1)
and then fit the variational parameters 4 to minimize the Kullback-Leibler (kL) diver-
gence between the approximating family and the exact posterior, KL(q(z; 1)||p(z | x)).
The KL is not tractable so VI optimizes a proxy. That proxy is the evidence lower bound

(ELBO),

£(4) = Ellog p(z,x)] — E[log q(z; 1)], 6.0

where expectations are taken with respect to q(z; ). Maximizing the ELBO with respect
to A is equivalent to minimizing the KL divergence. The issues around vI stem from the
ELBO and the iterative algorithms used to optimize it. When the algorithm zeroes (or
nearly zeroes) some of the support of q(z; 1), it becomes hard to later “escape,” i.e., to
add support for the configurations of the latent variables that have been assigned zero
probability (MacKay, 2003; Burda et al., 2015). This leads to poor local optima and to
sensitivity to the starting point, where a misguided initialization will lead to such op-
tima. These problems happen in both gradient-based and coordinate ascent methods.
We address these issues with proximity variational inference (PV1), a variational infer-
ence algorithm that is specifically designed to avoid poor local optima and to be robust

to different initializations.

PVI builds on the proximity perspective of gradient ascent. The proximity perspective
views each step of gradient ascent as a constrained minimization of a Taylor expansion of

the objective around the previous step’s parameter (Spall, 2003; Boyd and Vandenberghe,
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Figure 5.1: Proximity variational inference is robust to bad initialization. We study
aBernoulli factor model. Model parameters are randomly initialized on aring around the
known true parameters (in red) used to generate the data. The arrows start at these pa-
rameter initializations and end at the final parameter estimates (shown as green dots). (a)
Variational inference with gradient ascent suffers from multiple local optima and cannot
reliably recover the truth. (b) PVI with an entropy proximity statistic reliably infers the
true parameters using Algorithm 2.

2004). The constraint, aproximity constraint, enforces that the next point should be inside
aEuclidean ball of the previous. The step size relates to the size of that ball. We construct
PVI1 by questioning whether such a Euclidan distance-based constraint is appropriate,
and whether other notions of proximity may be useful in constraining gradient ascent

steps.

In V1, a constraint on the Euclidean distance means that all dimensions of the variational
parameters are equally constrained. We posit that this leads to problems; some dimen-
sions need more regularization than others. For example, consider a variational distri-
bution that is Gaussian. A good optimization will change the variance parameter more
slowly than the mean parameter to prevent rapid changes to the support. The Euclidean
constraint cannot enforce this. Furthermore, the constraints enforced by gradient de-
scent are transient; the constraints are relative to the previous iterate —one poor move

during the optimization can lead to permanent optimization problems.
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To this end, PVI uses proximity constraints that are more meaningful to variational infer-
ence and to optimization of probability parameters. A constraint is defined using a prox-
imity statistic and distance function. As one example, we consider a constraint based on
the entropy proximity statistic. This limits the change in entropy of the variational ap-
proximation from one step to the next. Consider again a Gaussian approximation. The
entropy is a function of the variance alone and thus the entropy constraint counters the
pathologies induced by the Euclidean proximity constraint. We also study constraints
built from other proximity statistics, such as those that penalize the rapid changes in the

mean and variance of the approximate posterior.

Figure 5.1 provides an illustration of the advantages of PVI. Our goal is to estimate the pa-
rameters of a factor analysis model with variational inference, i.e., using the posterior ex-
pectation under a fitted variational distribution. We run variational inference 100 times,
each time initializing the estimates (the model parameters) to a different position on a

ring around the truth.

In the figure, red points indicate the true value. The start locations of the green arrows
indicate the initialized estimates. Green points indicate the final estimates, after opti-
mizing from the initial points. Panel (a) shows that optimizing the standard ELBO with
gradients leads to poor local optima and misplaced estimates. Panel (b) illustrates that
regardless of the initialization, PVI with an entropy proximity statistic finds estimates

that are close to the true value.

The rest of this chapter is organized as follows. Section 5.2 reviews variational inference
and the proximity perspective of gradient optimization. Section 5.3 derives PVI; we de-
velop four proximity constraints and two algorithms for optimizing the ELBO. We study
four models in Section 5.4: a Bernoulli factor model, a sigmoid belief network (Mnih and
Rezende, 2016), a variational autoencoder (Kingma and Welling, 2014; Rezende et al.,
2014), and a deep exponential family model of text (Ranganath et al., 2015). PVI outper-

forms classical methods for variational inference.
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Related Work. Recent work has proposed several related algorithms. Khan et al. (2015)
and Theis and Hoftman (2015) develop a method to optimize the ELBO that imposes a
soft limit on the change in KL of consecutive variational approximations. This is equiv-
alent to PVI with identity proximity statistics and a KL distance function. Khan et al.
(2016) extend both prior works to other divergence functions. Their general approach is
equivalent to PVI identity proximity statistics and distance functions given by strongly-
convex divergences. Compared to prior work, PvI generalizes to a broader class of prox-
imity statistics. We develop proximity statistics based on entropy, KL, orthogonal weight

matrices, and the mean and variance of the variational approximation.

The problem of model pruning in variational inference has also been studied and ana-
Iytically solved in a matrix factorization model in Nakajima et al. (2013) —this method is
model-specific, whereas PvI applies to a much broader class of latent variable models. Fi-
nally, deterministic annealing (Katahira et al., 2008) consists of adding a temperature pa-
rameter to the entropy term in the ELBO that initialized to a large value then annealed to
unity during inference. This is similar to PVI with the entropy proximity statistic which
keeps the entropy stable across iterations. Deterministic annealing enforces global pe-
nalization of low-entropy configurations of latent variables rather than the smooth con-
straint used in PVI, and cannot accommodate the range of proximity statistics we design

in this work.

5.2 Variational Inference

Consider amodel p(x, z), where x is the observed data and z are the latent variables. As de-
scribed in Section 5.1, VI posits an approximating family q(z; 1) and maximizes the ELBO
in Equation (5.1). Solving this optimization is equivalent to finding the variational ap-
proximation that minimizes KL divergence to the exact posterior (Jordan et al., 1999;

Wainwright and Jordan, 2008).

65



5.2.1 Gradient Ascent has Euclidean Proximity

Gradient ascent maximizes the ELBO by repeatedly following its gradient. One view of
this algorithm is that it repeatedly maximizes the linearized ELBO subject to a proxim-
ity constraint on the current variational parameter (Spall, 2003). The name ‘proximity’
comes from constraining subsequent parameters to remain close in the proximity statis-
tic. In gradient ascent, the proximity statistic for the variational parameters is the iden-

tity function f(4) = 4, and the distance function is the square difference.

Let A, be the variational parameters at iteration t and p be a constant. To obtain the next

iterate 4,,,, gradient ascent maximizes the linearized ELBO,
1
Udp1) = L) + VLAY Ay — 4) — E(Am — )" A1 — Ao)- (5.2)

Specifically, this is the linearized ELBO around A;, subject to 4,,, being close to 4; in

squared Euclidean distance.

Finding the 4,,, which maximizes Equation (5.2) yields
Ary1 = A4+ pVL(AY). (5-3)

This is the familiar gradient ascent update with a step size of p. The step size p controls
the radius of the Euclidean ball which demarcates valid next steps for the parameters.
Note that the Euclidean constraint between subsequent iterates is implicit in all gradient

ascent algorithms.
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5.2.2 An Example where Variational Inference Fails

We study a setting where variational inference suffers from poor local optima. Consider

a factor model, with Bernoulli latent variables and Gaussian likelihood:

zy ~ Bernoulli(7r) (5-4)

x; ~ Gaussian (u = 3}, zyhty, 0% = 1). (5.5)

This is a “feature” model of real-valued data x; when one of the features is on (i.e., z;;, =
1), the ith mean shifts according the that feature’s mean parameter (i.e., ;). Thus the
binary latent variables z;, control which cluster means y contribute to the distribution

Ofxi.

The Bernoulli prior is parametrized by 7; we choose a Bernoulli approximate posterior
q(zi; Ax) = Bernoulli(1;). A common approach to v1is coordinate ascent (Bishop, 20006),
where we iteratively optimize each variational parameter. The optimal variational pa-

rameter for z; is

Aie x exp {[E_Zik l—%‘z(xi — Zzij“j)zn' (5.6)
J

We can use this update in a variational expectation-maximization setting. The corre-

sponding gradient for uy is

% = —% i (—xi/lik + dirpi + ik ]Z#;c/lij:uj) : (.7
Meditating on these two equations reveals a deficiency in mean field variational infer-
ence. First, if the mean parameters u are initialized far from the data then q*(z;; = 1)
will be very small. The reason is in Equation (5.6), where the squared difference between
the data x; and the expected cluster mean will be large and negative. Second, when the
probability of cluster assignment is close to zero, A;; is small. This means that the norm

of the gradient in Equation (5.7) will be small. Consequently, learning will be slow. We
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Algorithm 1: Proximity Variational Inference

Input: Initial parameters 4, proximity statistic f(4), distance function d
Output: Parameters 4 of variational q(4) that maximize the ELBO objective
while £ not converged do

Aip1 < A4 + Noise

while U not converged do

| Update 4,41 < 441 +pV,U(A441)

end

A < A
end
return 4

see this phenomenon in Figure 5.1 (a). Variational inference arrives at poor local optima

and does not recover the correct cluster means.

5.3 Proximity Variational Inference

We now develop PVI, a variational inference method that is robust to initialization and
can consistently reach good local optima (Section 5.3.1). PVI alters the notion of prox-
imity. We further restrict the iterates of the variational parameters by deforming the
Euclidean ball implicit in classical gradient ascent. This is done by choosing proximity
statistics that are not the identity function, and distance functions that are different than
the square difference. These design choices help guide the variational parameters away
from poorlocal optima (Section 5.3.2). One drawback of the proximity perspective is that
it requires an inner optimization at each step of the outer optimization. We use a Taylor

expansion to avoid this computational burden (Section 5.3.3).

5.3.1 Proximity Constraints for Variational Inference

PVI enriches the proximity constraint in gradient ascent of the ELBO. We want to de-
velop constraints on the iterates 4, to counter the pathologies of standard variational

inference.
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Let f(-) be a proximity statistic, and let d be a differentiable distance function that mea-
sures distance between proximity statistic iterates. A proximity constraint is the combi-
nation of a distance function d applied to a proximity statistic f. (Recall that in classical
gradient ascent, the Euclidean proximity constraint uses the identity as the proximity
statistic and the square difference as the distance.) Let k be the scalar magnitude of the
proximity constraint. We define the proximity update equation for the variational pa-

rameters 4, to be

UAp41) =L(A) + VLA (A41 — A0) = %(lm A0 A1 — A0 — k- d(f(D), f(A¢41)),

(5.8)

where 4 is the variational parameter to which we are measuring closeness. In gradient
ascent, this is the previous parameter 4 = 4;, but our construction can enforce proximity
to more than just the previous parameters. For example, we can set 4 to be an exponential

moving average' —this adds robustness to one-update optimization missteps.

The next parameters are found by maximizing Equation (5.8). This enforces that the vari-
ational parameters between updates will remain close in the proximity statistic f(4). For
example, f(1) might be the entropy of the variational approximation; this can avoid zero-
ing out some of its support. This procedure is detailed in Algorithm 1. The magnitude k
of the constraint is a hyperparameter. The inner optimization loop optimizes the update

equation U at each step.

5.3.2 Proximity Statistics for Variational Inference

We describe four proximity statistics f(4) appropriate for variational inference. To-
gether with a distance function, these proximity statistics yield proximity constraints.

(We study them in Section §.4.)

"The exponential moving average of a variable 4 is denoted 4 and is updated according to 4 < ad + (1 —
a)A, where « is a decay close to one.

69



Algorithm 2: Fast Proximity Variational Inference

Input: Initial parameters 4, adaptive learning rate optimizer, proximity statistic
f(4), distance d
Output: Parameters 4 of the variational distribution q(4) that maximize the ELBO
objective
while £, not converged do )
A1 = A+ p(VL(@A,) — k- (VA(f(A), f(AD)V f(A0).
A=ai+ (1 - )i
end
return A

Entropy Proximity Statistic. Consider a constraint built from the entropy proximity
statistic, f(1) = H(q(z; 1)). Informally, the entropy measures the amount of randomness
present in adistribution. High entropy distributions look more uniform across their sup-

port; low entropy distributions are peaky:

Using the entropy in Equation (5.8) constrains all updates to have entropy close to
their previous update. When the variational distributions are initialized with large
entropy, this statistic balances the “zero-forcing” issue that is intrinsic to variational
inference (MacKay, 2003). Figure 5.1 demonstrates how Pv1 with an entropy constraint

can correct this pathology.

KL Proximity Statistic. We can rewrite the ELBO to include the KL between the ap-

proximate posterior and the prior (Kingma and Welling, 2014),

£(4) = E[log p(x | 2)] — K1(q(z | x; 1)||p(2)).

Flexible models tend to minimize the KL divergence too quickly and get stuck in poor
optima (Bowman et al., 2016). The choice of KL as a proximity statistic prevents the KL

from being optimized too quickly relative to the likelihood.

Mean/Variance Proximity Statistic. A common theme in the problems with varia-
tional inference is that the bulk of the probability mass can quickly move to a point where

that dimension will no longer be explored (Burda et al., 2015). One way to address this
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is to restrict the mean and variance of the variational approximation to change slowly
during optimization. This constraint only allows higher order moments of the varia-
tional approximation to change rapidly. The mean u = Ey(,)[z] and variance Var(z) =

Eqz0)[(z — w)?] are the statistics f(1) we constrain.

Orthogonal Proximity Statistic. In Bayesian deep learning models such as the vari-
ational autoencoder (Kingma and Welling, 2014; Rezende et al., 2014) it is common to
parametrize the variational distribution with a neural network. Orthogonal weight ma-
trices make optimization easier in neural networks by allowing gradients to propagate
further (Saxe et al., 2014). We can exploit this fact to design an orthogonal proximity
statistic for the weight matrices W of neural networks: f(W) = WW T. With an orthogo-

nal initialization for the weights, this statistic enables efficient optimization.

We gave four examples of proximity statistics that, together with a distance function,
yield proximity constraints. We emphasize that any function of the variational parame-
ters f(4) can be designed to ameliorate issues with variational inference. We discuss how

to select a proximity statistic in Section 5.5.

5.3.3 Taylor-expanding the Proximity Constraint for Speed

PVI in Algorithm 1 requires optimizing the update equation, Equation (5.8), at each iter-
ation. This rarely has a closed-form solution and requires a separate optimization pro-

cedure that is computationally expensive.

An alternative is to use a first-order Taylor expansion of the proximity constraint. Let Vd
be the gradient with respect to the second argument of the distance function, and f(1) be

the first argument to the distance. We compute the expansion around 4, (the variational
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parameters at step f),
UAesr) =L(A0) + VEGA) (Resr — A¢)
- %utﬂ — ) Gar — A)
— k- (d(f(A), f(Ay)

+ VA(f (D), FANVFA)T Argr = 40)-

This Taylor expansion enjoys a closed-form solution for the variational parameters

/‘tt+1,
Aip1 = A+ p(VLA) = k- (VA(fAD), FADVF (). (5.9)

Note that setting 4 to the current parameter 4, removes the proximity constraint. Dis-

tance functions are minimized at zero so their derivative is zero at that point.

Fast PvI is detailed in Algorithm 2. Unlike PvI in Algorithm 1, the update in Equa-
tion (5.9) does not require an inner optimization. Fast PVI is tested in Section §.4. The
complexity of fast PVI is similar to standard VI because fast PVI optimizes the ELBO
subject to the distance constraint in f. (The added complexity comes from computing

the derivative of f; no inner optimization loop is required.)

Finally, note that fast PvI implies a global objective which varies over time. It is

’Cproximity(/lt+1) :[Eq [IOg p(X’ Z)] - [Eq [log Q(/‘Lt+1)] —k- d(f(/;{)a f(lt+1))-

Because d is a distance, this remains a lower bound on the evidence, but where new vari-

ational approximations remain close in f to previous iterations’ distributions.
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Inference Method ELBO Likelihood

Variational Inference -121.4 -113.7
Deterministic Annealing -116.8 -108.8
PVI, Entropy Constraint -113.3 -106.7
PV1, Mean/Variance Constraint -114.9 -107.4

Table 5.1: Proximity variational inference improves on deterministic anneal-
ing (Katahira et al., 2008) and VI in a one-layer sigmoid belief network. We report
the test set evidence lower bound (ELBO) and marginal likelihood on the binary MNIST
dataset (Larochelle and Murray, 2011). The model has one stochastic layer of 200 latent
variables. PVI outperforms deterministic annealing (Katahira et al., 2008) and the clas-
sical variational inference algorithm.

5.4 Empirical Study

We developed proximity variational inference (Pv1). We now empirically study Pv1, vari-

ational inference, and deterministic annealing (Katahira et al., 2008).2

We first study sigmoid belief networks and find that Pv1 improves over deterministic
annealing and VI in terms of held-out values of the ELBO and marginal likelihood. We
then study a variational autoencoder model of images. Using an orthogonal proximity
statistic, we show that PvVI improves over classical v1 by reducing overpruning. Finally,
we study a deep generative model fit to a large corpus of text, where PVI yields better

predictive performance with little hyperparameter tuning.3

Hyperparameters. For Pvi, we use the inverse Huber distance for d.# The inverse
Huber distance penalizes smaller values than the square difference. For PvI Algorithm 2,
we set the exponential moving average decay constant for 4 to a = 0.9999. We set the
constraint scale k (or temperature parameter in deterministic annealing) to the initial

absolute value of the ELBO unless otherwise specified. We explore two annealing sched-

2Source code for reproducibility is available at https://github.com/altosaar/proximity_vi.

3We also compared PVI to Khan et al. (2015). Specifically, we tested PVI on the Bayesian logistic regres-
sion model from that paper and with the same data. Because Bayesian logistic regression has a single mode,
all methods performed equally well. We note that we could not apply their algorithm to the sigmoid belief
network because it would require approximating difficult iterated expectations.

+We define the inverse Huber distance d(x, y) to be |x — y|if |x — y| < 1and 0.5(x — y)? + 0.5 otherwise.
The constants ensure the function and its derivative are continuous at |[x — y| = 1.
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Inference Method ELBO Likelihood

Variational Inference -116.2 -104.9
Deterministic Annealing -102.0 -94.2
PVI, Entropy Constraint -99.7 -93.2
PV1, Mean/Variance Constraint -100.7 -93.3

Table 5.2: Proximity variational inference improves over deterministic annealing
and VI in a three-layer sigmoid belief network. The model has three layers of 200 la-
tent variables. We report the evidence lower bound (ELBO) and marginal likelihood on
the MINIST test set (Larochelle and Murray, 2011).

ules for PVI and deterministic annealing: a linear decay and an exponential decay. For

the exponential decay, the value of the magnitude at iteration t of T total iterations is set
t

to k - yT where y is the decay rate. We use the Adam optimizer (Kingma and Ba, 2015)

unless otherwise specified.

5.4.1 Sigmoid Belief Network

The sigmoid belief network is a discrete latent variable model with layers of Bernoulli la-
tent variables (Neal, 1992; Ranganath et al., 2015). It is used to benchmark variational in-
terence algorithms (Mnih and Rezende, 2016). The approximate posterior is a collection
of Bernoullis, parameterized by an inference network with weights and biases. We fit
these variational parameters with v1, deterministic annealing (Katahira et al., 2008), or
pv1, and learn the model parameters (weights and biases) using variational expectation-

maximization.

We learn the weights and biases of the model with gradient ascent. We use a step
size of p = 1073 and train for 4 x 10° iterations with a batch size of 20. For pvI Algo-
rithm 2 and deterministic annealing, we grid search over exponential decays with rates
y € {1075,1075, ...,10719,1072°,1073%} and report the best results for each algorithm. (We
also explored linear decays but they did not perform as well.) To reduce the variance
of the gradients, we use the leave-one-out control variate of Mnih and Rezende (2016)
with 5 samples. (This is an extension to the black box variational inference algorithm in

Ranganath et al. (2014).)
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Inference Method ELBO Likelihood

Variational Inference -I01.0 -94.2
pv1, Orthogonal Constraint ~ -100.4 -93.9

Table 5.3: Proximity variational inference with an orthogonal proximity statis-
tic makes optimization easier in a variational autoencoder model (Kingma and
Welling, 2014; Rezende et al., 2014). We report the held-out evidence lower bound
(ELBO) and estimates of the marginal likelihood on the binarized MNIST (Larochelle
and Murray, 2011) test set.

Results on MNIST. We train a sigmoid belief network model on the binary MNIST
dataset of handwritten digits (Larochelle and Murray, 2011). For evaluation, we compute
the ELBO and held-out marginal likelihood with importance sampling on the validation
set of 10* digits using 5000 samples, as in Rezende et al. (2014). In Table 1 we show the
results for a model with one layer of 200 latent variables. Table 5.2 displays similar results
for a three-layer model with 200 latent variables per layer. In both one and three-layer
models the KL proximity statistic performs worse than the mean/variance and entropy
statistics; it requires different decay schedules. Overall, PvI with the entropy and mean/-
variance proximity statistics yields improvements in the held-out marginal likelihood in

comparison to deterministic annealing and VI.

5.4.2 Variational Autoencoder

To demonstrate the value of designing proximity statistics tailored to specific models,
we study the variational autoencoder (Kingma and Welling, 2014; Rezende et al., 2014).
This model is difficult to optimize, and current optimization techniques yield solutions
that do not use the full model capacity (Burda et al., 2015). In Section 5.3.2 we designed an
orthogonal proximity statistic to make backpropagation in neural networks easier. We
show that this statistic enables us to find a better approximate posterior in the variational

autoencoder by reducing overpruning,.

We fit the variational autoencoder to binary MNIST data (Larochelle and Murray, 2011)

with variational expectation-maximization. The model has one layer of 100 Gaussian la-
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tent variables. The inference network and generative network are chosen to have two
hidden layers of size 200 with rectified linear units. We use an orthogonal initialization
for the inference network weights. The learning rate is set to 10~° and we run VI and PVI
for 5 x 10* iterations. The orthogonal proximity statistic changes rapidly during opti-
mization, so we use constraint magnitudes k € {1,1071,1072,...,10~°}, with no decay, and

report the best result.

We compute the ELBO and importance-sampled marginal likelihood estimates on the
validation set. Table 5.3 shows that PvI with the orthogonal proximity statistic on
the weights of the inference network enables easier optimization and improves over

VI.

Why does PVI improve upon VI in the variational autoencoder? The choice of recti-
fied linear units in the inference network allows us to study overpruning of the latent
code (MacKay, 2001; Burda et al., 2015). We study the fraction of ‘dead units’— the frac-
tion of rectified linear units in each layer of the inference neural network whose input is
below zero. With PvI Algorithm 2 and the orthogonal proximity constraint, the infer-
ence network has 1.6% fewer dead units in the hidden layer and shows a 3.2% reduction in

the output layer than in the same model learned using classic variational inference.

Once the input to a rectified linear unit drops below zero, the unit stops receiving gradi-
ent updates. The outputlayer parametrizes the latent variable distribution, so this means
pvI reduced the pruning of the approximate posterior and led to the utilization of 3 ad-
ditional latent variables. This is the reason it outperformed a variational autoencoder fit

with VI.

5.4.3 Deep Generative Model of Text

Deep exponential family models, Bayesian analogues to neural networks, represent a
flexible class of models (Ranganath et al., 2015). However, black box variational inference
is commonly used to fit these models, which requires variance reduction (Ranganath et

al., 2014). Deep exponential family models with Poisson latent variables present a chal-
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Inference Method Perplexity

Variational Inference 2329
PVI, Mean/Variance Constraint 2204

Table 5.4: Proximity variational inference with a mean/variance proximity statistic
improves predictive performance in a deep exponential family model with Poisson
latent variables. We report the held-out perplexity on the Sczence corpus of journal arti-
cles.

lenging approximate inference problem because they are discrete and high-variance. We
demonstrate that PvI with the mean/variance proximity constraint improves predictive

performance in such an unsupervised model of text.

The generative process for a single-layer deep exponential family model of text, with

Poisson latent variables and Poisson likelihood, is

z ~ Poisson(A)

x ~ Poisson(z"g(W)),

where W are real-valued model parameters and g is an elementwise function that maps
to the positive reals (we use the softplus function). The dimension of zis K, so the model
parameters must have shape (K, V) where V is the cardinality of the count-valued obser-
vations X. We use this as a model of documents, so x is the bag-of-words representation
of word counts, W represents the common factors in documents, and the per-document

latent variable z captures factors prevalent in documents’ language.

We study the performance of our method on a corpus of articles from the academic jour-
nal Sczence. The corpus contains 138k documents in the training set, 1k documents in the
test set, and 5.9k terms. We set the latent dimension to 100, and fit the variational Pois-
son parameters using black box variational inference (Ranganath et al., 2014) using mini-

batches of size 64 and 32 samples of the latent variables to estimate the gradients.

Poisson variables have high variance, so we use the optimal control variate scaling de-

veloped in Ranganath et al. (2014) and estimate this scaling in a round-robin fashion as

77



university fig disease

new dna virus
department  protein hiv
york cells aids
research cell human
science gene patients
state binding  diseases
laboratory two cases

national  sequence infection
california  proteins infected

Table 5.5: The top ten words for three factors of a deep exponential family model
with Poisson latent variables fit to the Science corpus of scientific articles. We show
topics from a model fit with proximity variational inference; the topics for the same
model fit with variational inference are similar.

in Mnih and Rezende (2016) for efficiency. We use the RMSProp adaptive gradient op-
timizer (Tieleman and Hinton, 2012) with a step size of 0.01. For pvI Algorithm 2 with
the mean/variance proximity statistic, we use an exponential decay for the constraint and
test decay rates y of 107> and 1071°. We train for 10° iterations on the Sczence corpus, using

variational expectation-maximization to learn the model parameters.

For evaluation, we keep the model parameters fixed and hold out 90% of the words in
each document in the test set. Using the 10% of observed words in each document, we
learn the variational parameters using PVI or variational inference with 300 iterations per

document. We compute perplexity on the held-out documents, which is given by

(— Y dedocs 2wed 108 P(w | # held-out in d))
€X] )
P Nheld—out words

Conditional on the number of held-out words in a document, the distribution over held-
out words is multinomial. The mean of the conditional multinomial is the normalized
Poisson rate of the document matrix-multiplied with the softplus of the weights. This is
the same evaluation metric as in Ranganath et al. (2015). The results of fitting the model
to the corpus of Sczence documents are reported in Table 5.4 and Table 5.5. While the
topics found by models fit with both PvI and v1 are similar, PVI gives better predictive

performance in terms of held-out perplexity.
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5.5 Discussion

We presented proximity variational inference, a flexible method designed to avoid bad
local optima. We showed that classic variational inference gets trapped in these local op-
tima and cannot recover. The choice of proximity statistic f and distance d enables the
design of a variety of constraints that improve optimization. As examples of proximity
statistics, we gave the entropy, KL divergence, orthogonal proximity statistic, and the
mean and variance of the approximate posterior. We evaluated our method in four mod-
els to demonstrate that it is easy to implement, readily extensible, and leads to beneficial

statistical properties of variational inference algorithms.

The empirical results also yield guidelines for choosing proximity statistics. The entropy
is useful for models with discrete latent variables which are prone to quickly getting stuck
in local optima or flat regions of the objective. We also saw that the KL statistic gives
poor performance empirically, and that the orthogonal proximity statistic reduces prun-
ing in deep generative models such as the variational autoencoder. In models like the
deep exponential family model of text, the entropy is not tractable so the mean/variance

proximity statistic is a natural choice.

Future Work. Simplifying optimization is necessary for truly black-box variational in-
tference. An adaptive magnitude decay based on the value of the constraint should fur-
ther improve the technique (this could be done per-parameter). New proximity con-
straints are also easy to design and test. For example, the variance of the gradients of
the variational parameters is a valid proximity statistic—which can be used to avoid vari-
ational approximations that have high-variance gradients. Another set of interesting
proximity statistics are empirical statistics of the variational distribution, such as the
mean, for when analytic forms are unavailable. We also leave the design and study of

constraints that admit coordinate updates to future work.
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Chapter 6

Discussion

o3 oROBABILISTIC modeling is useful across scientific domains. However, proba-
L{\ I bilistic modeling methods that do not take into account the structure of a
¢ % problem, the form of individual datapoints, or information about probability

distributions during optimization leave performance gains on the table.

As a motivating example, we built the structure of a statistical physics model into a prob-
abilistic modeling method with hierarchical variational models. Efficient use of the con-
nectivity patterns in physics models enabled scaling variational approximations to mod-

els with millions of random variables.

There is also utility in constructing probabilistic models with knowledge about individ-
ual datapoints. RANKFROMSETS outperforms competitive recommendation models that
either fail to take into account the goals of recommendation or the structure of items

with sets of attributes.

We also improved variational inference, by making use of information about probability
distributions within the proximity variational inference algorithm. This enabled accu-

rate inferences about probability distributions.
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Inference Method Free Energy

Variational Inference -2.144
pv1, Entropy Constraint -2.158

Table 6.1: Proximity variational inference with the entropy proximity statistic im-
proves the accuracy of an HVM applied to an Ising model with 256 random vari-
ables. Building on the tools developed in Chapter 3 and Chapter 5, we report an impor-
tance sampling estimate of the free energy (lower is better; the exact value is F ~ —2.198
at inverse temperature § = 0.4).

To further unify the thesis of problem structure as utile in probabilistic modeling, we test
proximity variational inference to measure whether the benefits of leveraging knowledge
about a probability distributions are additive to performance gains from developing ap-

plied methods.

Consider an Ising model studied in Chapter 3, where the goal is accurate inference of the
free energy. Table 6.1 shows a comparison between vI and PVI in an HVM. This is a re-
sult of testing the best-performing settings from Chapter § with the entropy constraint
on both the variational prior and recursive variational approximation in an HVM. The
additional information PVI makes available to the variational approximation during op-

timization leads to more accurate inference of the free energy.

Further, PVI can be applied to probability models fit with maximum likelihood estima-
tion. Table 6.2 reports the performance of a RFS model from Section 4.4 fit to arXiv
user behavior data. Fitting the recommendation model using the PVI entropy proxim-
ity constraint improves top-10 recommendation recall. Metrics other than out-matrix
recall (e.g. in-matrix recall) were comparable between these methods. With the pv1 en-
tropy constraint, the recommendation performance of RFS also improved in the meal
recommendation task. Table 6.3 reports these results. The best-performing settings
trom Chapter § generalize to maximum likelihood estimation in recommender systems,

here giving a 6.9% boost in top-1 recommender recall.

That pv1yielded improvements when applied to both HvMs applied to statistical physics

problems and the RFS recommendation model highlights several directions for further
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Model Recall @ 10 (%) Recall @ 100 (%)

RFS 0.32 2.54
RFS, Entropy Constraint 0.44 2.54

Table 6.2: Proximity variational inference with the entropy proximity statistic im-
proves top-10 out-matrix recall of RFS fit to arXivuser behavior data. We report the
recall for items with no clicks in the training data (described in Section 4.4) for the best-
performing settings of both PvI and RFS. Recall at 100 recommendations is comparable
between the methods.

Model Sampled Recall (%)
RFS 58
RFS, Entropy Constraint 62

Table 6.3: Proximity variational inference with the entropy proximity statistic im-
proves top-1 recall on a meal recommendation task.

research. First, might PvI yield further gains in accuracy when applied to statistical
physics models with millions of random variables? Practitioners are willing to trade off
diminished accuracy for scale in some cases, and PVI is straightforward to test in new

probability models and might help reduce the need for such trade-offs.

Studying where PVI yields marginal gains is also worth considering. For example, the
entropy proximity constraint yielded less-significant improvements when applied to RFS
fit to the meal recommendation data in Section 4.4. This may be because the large size
of data helped prevent overfitting, leading to reduced benefits of constraining parameter
updates. In contrast, HVMs fit to statistical physics models in Section 3.3 converged to a
solution very quickly, so monitoring convergence rates may be an additional source of

information for proximity statistics.

While Chapter 3 studied classical statistical physics models, future work in computa-
tional materials science and computational drug discovery will need to incorporate or
approximate quantum effects. Density functional theory calculations based on quan-
tum mechanics are expensive (Schmidt et al., 2019) and limit the length of time that a

material or drug binding to a protein can be simulated. Future work in this area should
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include study of the trade-off between the size of a system and the accuracy needed to
study the behavior of a system to achieve a materials design or drug design goal. For ex-
ample, suppose the behavior of a drug binding to a protein over the course of several
seconds is of clinical interest. Then a practitioner might tolerate more inaccuracy in an
HVM approximation than they would if the short-run behavior could be accurately cap-
tured in a density functional theory calculation. One way of improving the trade-off may
be to reduce the cost of fitting HVMs by derive objective functions with better gradient
signal-to-noise ratio (Tucker et al., 2019; Rainforth et al., 2018). A similar trade-off oc-
curs for system size, and it is unclear where HVMs may provide the only way to model a

large-scale physical system.

Chapter 4 developed RFS, and there remain several directions for future work on rec-
ommendation models for items with sets of attributes. Probabilistic generative models
for use in recommendation may enable better recommendations under uncertainty, or
easier incorporation of prior knowledge. However, probability distributions of sets of
attributes are difficult to parameterize. One example of a distribution defined on sets is
the Wallenius distribution (Wallenius, 1963; Junqu et al., 2000). It is interesting to con-
sider how a distribution on sets might be parameterized using a permutation-invariant
model such as RFS (Bloem-Reddy and Teh, 2019; Lee et al., 2018). Further, generalization
bounds are necessary follow-up work to universal approximation properties. A model
may be able to represent a distribution, but for practical purposes a key desideratum is
finding functions, nonlinearities, and architectures that make optimization easy and gen-

eralization feasible (Dziugaite and Roy, 2017).

Another line of work is in developing robust negative sampling-based objective func-
tions. The numeric value of the negative log-likelihood objective function used in RFS or
other models that use negative samples and embeddings cannot reliably assess conver-
gence. This is due to embeddings that are used in both positive and negative examples,
leading stochastic gradient updates to increase and decrease Monte Carlo estimates of

the objective during optimization. Reliable methods to estimate the value of objective
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functions may help reduce the need for expensive recommender systems evaluation met-
rics where a model may need to be evaluated on every item in an evaluation set. While
RFS was designed for the recall evaluation metric, connecting binary classification ob-
jective functions with negative examples to ranking-based metrics such as normalized

discounted cumulative gain would make these models useful broadly:

In Chapter 4, we found that RFS outperforms LSTM recurrent neural networks in the
task of recommending arXiv documents to users. This is counterintuitive, as the or-
der of item attributes (words in abstracts) should carry significant information. How-
ever, the computational budget was fixed for both models, and it is unclear which rec-
ommendation model to use with a large computational budget. Models such as trans-
tormers (Vaswani et al., 2017; Devlin et al., 2019; Lee et al., 2018) might lead to improved
recommendation performance, but at a greater computational cost than models such as
RFS with inner product parameterizations. Analyzing these trade-offs will help make in-
tormed choices of computational budget given performance requirements in practice.
Under computational constraints due to monetary budget or privacy regulation, such as
in clinical settings (Huang et al., 2020), models such as RFS that make fast, accurate, pre-

dictions may be preferable to more accurate, slower models.

Through careful consideration of how to build problem structure into probabilistic
models, we were able to scale variational methods to statistical physics models with mil-
lions of random variables, fit recommender systems to tens of millions of datapoints, and
improve the accuracy of variational inference. This highlights the need to ensure that
progress in probabilistic modeling continues to be translated into progress in applied

domains such as statistical physics and recommender systems.
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