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Abstract

ppliedmachine learning relies on translating the structure of a problem into

a computational model. This arises in applications as diverse as statistical

physics and food recommender systems. The pattern of connectivity in an

undirected graphical model or the fact that datapoints in food recommendation are un-

ordered collections of features can inform the structure of amodel. First, consider undi-

rected graphical models from statistical physics like the ubiquitous Ising model. Basic

research in physics requires scalable simulations for comparing the behavior of a model

to its experimental counterpart. The Ising model consists of binary random variables

with local connectivity; interactions between neighboring nodes can lead to long-range

correlations. Modeling these correlations is necessary to capture physical phenomena

such as phase transitions. To mirror the local structure of these models, we use flow-

based convolutional generative models that can capture long-range correlations. Com-

bining flow-based models designed for continuous variables with recent work on hier-

archical variational approximations enables the modeling of discrete random variables.

Compared to existing variational inference methods, this approach scales to statistical

physics models with millions of correlated random variables and uses 100 times fewer

parameters. Just as computational choices can be made by considering the structure of

an undirected graphical model, model construction itself can be guided by the structure

of individual datapoints. Consider a recommendation task where datapoints consist of

unordered sets, and the objective is to maximize top-K recall, a common recommen-

dation metric. Simple results show that a classifier with zero worst-case error achieves

maximum top-K recall. Further, the unordered structure of the data suggests the use of

a permutation-invariant classifier for statistical and computational efficiency. We eval-

uate such a classifier on human dietary behavior data, where every meal is an unordered

collection of ingredients, and find that it outperforms probabilistic matrix factorization

methods. Finally, we show that building problem structure into an approximate infer-

ence algorithm improves the accuracy of probabilistic modeling methods.
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Chapter 1

Introduction

rom the development of novel antibiotics (Stokes et al., 2020) to cataloging

sources of light in the night sky (Regier et al., 2019), many domains in science

can benefit from applied machine learning methods. However, the utility of

suchmethods hinges on building the structure of a problem—knowledge about the data

or task—into a machine learning solution. Whether the setting is statistical physics or

recommender systems, an off-the-shelf machine learning method can serve as a start-

ing point. But performance is sacrificed when a method cannot be customized to the

specifics of an applied scientific problem. This thesis focuses on probabilisticmodeling,

wherewhat is known about a problem can bemolded into assumptions about a probabil-

ity distribution. We develop probabilistic modeling methods that use the structure of a

problem to yield meaningful solutions in the study of models with large numbers of ran-

dom variables in statistical physics systems and recommender systems. In tandem, this

thesis develops an algorithm to improve the accuracy of approximations to probabilistic

models, through the use of the structure of a probability model during optimization. By

bothbuilding scalable probabilisticmodelingmethods tailored to answer scientificques-

tions, and improving flexible probabilistic modeling methods themselves, we highlight

the reciprocal relationship between these aims.
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Oneexample of an appliedproblem in statistical physics is the studyof probable configu-

rations of atoms in amaterial. Simulating amaterial to find likely configurations of atoms

with statistical physics models can be expensive, but designing materials with improved

properties is valuable (Schmidt et al., 2019). The computational cost of these simula-

tions for studying statistical physics models can be reduced by doing math, for example

in analytical calculations to develop approximations or to incorporate knowledge of how

neighboring atoms interact into simulations (Swendsen and Wang, 1987). A challenge

in studying statistical physics models is balancing problem-specific customization with

the resulting computational savings. Machine learning techniques applied to statistical

physics systems can be used to develop generic methods that exploit problem structure

for better performance. Thesemethods can be re-used acrossmodels, saving practition-

ers time.

Where statistical physics concerns probable configurations of interacting atoms, rec-

ommender systems find items a user is likely to interact with (Koren et al., 2009). For

example, humans eat. A meal recommender system can predict which meals someone

is likely to consume. Such a recommendation model might inform its predictions using

the history ofmeals a user has eaten, namely which foods comprise thosemeals. A prop-

erty of this type of data is that items (meals) are associated with unordered collections

of attributes (sets of foods). This means that the number of possible meals a user might

consume is very large. Existing methods for this type of data either cannot scale to large

numbers of datapoints, or fail to accurately predict which items a user is likely to con-

sume. This highlights the need to imbue a recommendationmodel with both properties

of the data (such asmeals represented as unordered sets) and the goals of the recommen-

dation problem, or accurate prediction of which items a user will consume.

Both statistical physics models and recommender systems can be framed as probabil-

ity models, the former as probable configurations of atoms, and the latter as probable

items users may consume. Probabilistic modeling relies on inferring the parameters of

a probability model using knowledge about the structure of the problem. For example,
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knowledge in the form of data regarding whichmeals someone has eaten can inform the

predictions of a recommendationmodel; or, knowledge of howneighboring atoms inter-

act in a material can be used in a probabilistic model of that material.

Practitioners that work with probability models seek probabilistic inferences. For

example, the goals of such inferences include computing probabilities, summing over

the random variables in a probability model, or finding likely configurations of random

variables. Common inference methods are Markov Chain Monte Carlo (Metropolis

et al., 1953), variational inference (Blei et al., 2017), and maximum likelihood estima-

tion (Bishop, 2006). This thesis uses variational inference and maximum likelihood

estimation, as both algorithms can be scaled to large probability models (Hoffman et al.,

2013; Robbins and Monro, 1951). In particular, the variational inference algorithm can

aid probabilistic inference in interacting systems of random variables found in statistical

physics models. However, variational inference is sensitive to the initial choice of pa-

rameters governing the probability of the random variables under study. The accuracy

of inferences of likely configurations of random variables can suffer, depending on this

choice of initial parameters. Inference algorithms such as variational inference are utile

in applied domains insofar as their performance is independent of the initial choice of

parameters.

This thesis is organized as follows. Chapter 2 introduces probabilistic models and gives

examples of their use in statistical physics and recommender systems. We also review

two approaches for statistical inference in probability models: variational inference and

maximum likelihood estimation. Chapter 3 develops and applies variational inference

methods for statistical physics models. We show that exploiting the structure of a sta-

tistical physics model in a variational inference method is advantageous. This work was

presented in Altosaar et al. (2019). Chapter 4 develops probability models for recom-

mending items with sets of attributes and is based on Altosaar et al. (2020). Similar to

variational methods in physics, accounting for the structure of the problem helps: prob-

abilitymodels that represent set-valued datapoints and the goals of the recommendation

3



task are accurate and scalable. Chapter 5 develops proximity variational inference (pvi)
based on Altosaar et al. (2018). pvi is an inference algorithm that is imbued with infor-

mation about a probability distributionwewish to infer. In this case, the structure of the

problem is information about a probability distribution, which is used to inform an algo-

rithm for fitting a probability model. We show how this enables pvi to obtain accurate

solutions. Finally, Chapter 6 reviews how knowledge about a problem is useful in build-

ing probabilistic models for science solutions. We apply the pvi algorithm developed in

Chapter 5 to the statistical physics setting of Chapter 3 and the recommender systems

application of Chapter 4. This highlights thatmethods development goes hand-in-hand

with the aimsof appliedprobabilisticmodeling. Weclosewith a discussionof extensions

of this line of work.
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Chapter 2

Background

his chapter describes probabilistic models and probabilistic inference,

taking as examples models from statistical physics and recommender sys-

tems.

2.1 ProbabilisticModels

Probabilitymodels assignprobability toconfigurationsof randomvariables. The random

variables in a probabilitymodelmight correspond to observed variables in a physical sys-

tem, or to latent properties representing patterns in data collected from the world, or a

combination of both. To define a probabilitymodel, it is necessary to specify the density

𝑝 of a collection of randomvariables 𝐳. We focus on probabilisticmodels 𝑝(𝐳)where rela-

tionships between random variables can be encoded as edges in a graph, or probabilistic

graphical models (Jordan, 2004).

2.1.1 Example: IsingModel

For example, consider a model used in statistical physics: the Ising model. The Ising

model can be used to model interactions between atoms in a material (Henelius et al.,

2016) to study how the material behaves in different conditions, paving the way to-
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Figure 2.1: The Isingmodel is a probabilisticmodel used in statistical physics. The
nodes in this probabilistic graphical model represent random variables, and the edges in
the graph represent relationships between neighboring random variables. In this Ising
model there are nine random variables variables 𝐳 = {𝑧1, 𝑧2, … , 𝑧9} represented by nodes
and the edges connecting two nodes indicate that those random variables interact in the
energy function of the model 𝐸(𝐳).

ward material design. This probabilistic model has binary random variables 𝑧𝑛 with

density

𝑝(𝐳; 𝛽) = exp(−𝛽𝐸(𝐳))
𝒵 . (2.1)

The semicolon in Equation (2.1) denotes that the model has a parameter 𝛽, represent-

ing the reciprocal temperature of the system of random variables (a physical quantity).

The energy function 𝐸(𝐳) encodes the relationships between random variables, and 𝒵,

the normalizing constant, ensures that this probability distribution sums to one over all

configurations of random variables (Chandler andWu, 1987). The energy function of the

Ising model is1

𝐸(𝐳) = −12 ∑𝑖,𝑗
𝐽𝑖𝑗𝑧𝑖𝑧𝑗 − 𝐻∑

𝑖
𝑧𝑖 . (2.2)

The interaction strength 𝐽𝑖𝑗 defines the interactions between randomvariables. In a sim-

ple Isingmodel, only nearest neighbors interact, so 𝐽𝑖𝑗 is nonzero if the random variables

𝑧𝑖 and 𝑧𝑗 are neighbors. The parameter𝐻 increases or decreases the energy in proportion

to the values of the random variables 𝑧𝑖; we give its physical interpretation later.

1Bold letters can denote collections of random variables 𝐳 = {𝑧1, 𝑧2, ..., 𝑧𝑁 }, or vectors, depending on the
context.

6



The Ising model can be represented as a probabilistic graphical model, shown in Fig-

ure 2.1. Two variables 𝑧𝑖 and 𝑧𝑗 interact (changing the value of one leads to a change in

probability of the other) only if they share an edge in the graph. This representation

works in conjuction with the density in Equation (2.1), as the presence of an edge in the

graph corresponds to two variables interacting in the energy function 𝐸. In this model,

the energy function (and hence graph) is such that only neighboring random variables

interact.

The Isingmodel can be used to study physical systems such asmagneticmaterials, where

interactions between atoms can be encoded into the interaction strength 𝐽𝑖𝑗. The inter-

actions between random variables encoded in this manner contain the necessary infor-

mation to model the properties of a material. In modeling a material, the random vari-

ables 𝐳 canbe referred to as spins. Spin is a typeof angularmomentumcarriedbyparticles

comprising atoms, and such angular momentum causes a magnetic field. Although the

random variables 𝐳 are binary, taking on values of −1 and +1, they can be re-scaled to

the magnetic strength of the atoms in a particular material of interest if comparison to

experimental data is required. The parameter 𝐻 can be interpreted as the magnitude of

an external magnetic field that interacts with the magnetic strength and orientation of

every atom (Chandler andWu, 1987).

To see how well an Ising model mirrors a physical material, a property such as magneti-

zation can be measured in the material, and calculated using the model. Magnetization

is the average orientation of the magnetic strength of every atom or random variable in

the material,

𝑀(𝐳) = 1
𝑁

𝑁
∑
𝑖=1

𝑧𝑖 . (2.3)

By measuring the magnetization 𝑀 and computing its value in the Ising model, a prac-

titioner can deduce how accurately the model reproduces experimental data. For ex-

ample, if an Ising model with nearest neighbors (𝐽𝑖𝑗 ≠ 0 if 𝑖 neighbors 𝑗) does not accu-

rately reproduce themagnetization of a physical material, it may be necessary to include
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Attributes User
Items Pizza Eggs Taco Salad Avocado Chicken Sardines Beer Coffee 1
Morning Pizza • • • •
Dinner Pizza • • •
Small Salad • • •
Big Salad • • • • • •
Taco • • • •
Fish Taco • •

Table 2.1: Example binary classification data. A user consumes meals (rightmost col-
umn), and meals have attributes (table on the left. Meals are represented as datapoints
𝑥𝑛 with covariates being foods in the meals. The goal of a binary classifier trained on
this data is to predict whichmeals a user will consume, or which datapoints (𝑥𝑛, 𝑦𝑛) have
a label 𝑦𝑛 = 1. An accurate classifier will information about which covariates are shared
acrosspositiveornegative labeleddatapoints; for example, this user consumesmeals that
include eggs and coffee.

second-nearest neighbor effects (𝐽𝑖𝑗 ≠ 0 if 𝑖 and 𝑗 are connected by a path of length at

most two).

Another example of a quantity that can be measured experimentally and computed in a

probabilistic model is the thermodynamic free energy 𝐹,

𝐹 = −1𝛽 log𝒵 . (2.4)

The free energy of a system relates to the amount of energy that can be extracted from

a system by its surroundings. For example, the free energy of a protein is used to under-

stand its stability, and can be measured by the amount of energy needed to destroy its

structure by denaturing it (Stone, 2013). In modeling a magnetic material or biological

material, the free energy can be derived from the normalizing constant 𝒵 (Chandler and

Wu, 1987).

2.1.2 Example: Binary Classification

Another example of a probabilistic model is a binary classifier (Bishop, 2006), repre-

sented as a graphical model in Figure 2.2. Consider𝑁 datapoints of the form (𝑥𝑛, 𝑦𝑛) con-

sisting of covariates 𝑥𝑛 and binary responses 𝑦𝑛. As illustrated in Table 2.1, the covariates

𝑥𝑛 might represent information about items such as foods in ameal, and 𝑦𝑛 may indicate

8



Figure 2.2: Binary classification is a probabilistic modeling technique used in rec-
ommender systems. Observed random variables are denoted by shaded nodes, and di-
rected edges in the graph indicated conditional dependence on a node’s parents. There
are𝑁 independent, identically distributed observations (𝑦𝑛, 𝑥𝑛); the rectangular plate de-
notes repetition of nodes and edges. The model predicts a binary response 𝑦𝑛 using pa-
rameters 𝜽 and covariates 𝑥𝑛.

whether a single user ate a meal with those foods. A binary classifier would then classify

whether the user would eat a newmeal ̂𝑥𝑛 based on its constituent foods.

Abinary classifier is definedusing a regression function𝑓withparameters 𝜽. The logistic

function 𝜎 applied to the regression function defines the probability model for a binary

classifier,

𝑝(𝑦𝑛 ∣ 𝑥𝑛; 𝜽) =
exp (𝜎(𝑓(𝑥𝑛; 𝜽)) ⋅ 𝑦𝑛)

𝒵 . (2.5)

The logistic function constrains the output of 𝑓 to the unit interval, and 𝒵 is again the

normalizing constant. The regression function 𝑓 uses information about a datapoint to

classify whether the response 𝑦𝑛 is positive. An example of a regression function is an

inner product, defined by

𝑓(𝑥𝑛; 𝜽) = 𝜽⊤𝑥𝑛 , (2.6)

which corresponds to logistic regression (Bishop, 2006). Alternatively, a more flexible

model can be built using a deep neural network (LeCun et al., 2015).
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2.2 Inference

In a probability model, computing—or, inferring—properties of the probability dis-

tribution is a central task. One inference problem is to ascertain likely configurations

of random variables. Another is to compute the sum of a probability distribution over

a set of random variables, for example, to compute the normalizing constant (Jordan,

2004).

2.2.1 Computing Likely Configurations of RandomVariables

In the study of a probability model such as a binary classifier in Equation (2.5), one ques-

tion of interest is: for a set of observations (𝑥𝑛, 𝑦𝑛), what is a likely value of 𝜃? Maximum

likelihood estimation is one way to answer this question (Bishop, 2006).

Aprobability distribution like𝑝(𝐲 ∣ 𝐱; 𝜽) is also known as a likelihood function. It defines

the likelihood of a random variable 𝐲 conditional on the value of data 𝐱, with the current

setting of the parameters 𝜽. Themaximum likelihood estimate of the parameters of this

probability model for the data (𝐱, 𝐲) is given by

𝜽∗ = argmax
𝜽

𝑝(𝐲 ∣ 𝐱; 𝜽) . (2.7)

Thismaximum likelihood estimate of the parameters 𝜽∗ can be computed using stochas-

tic optimization if the data is large (Robbins andMonro, 1951).

2.2.2 Computing theNormalizing Constant

The second central inference task in probabilistic modeling is summing a probability

model over a set of random variables. One example of this is computing the normal-

izing constant 𝒵. This inference problem requires computing a sum: the normalizing

constant ensures a probability distribution sums to 1 over values the random variables

can take.
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Consider computing the normalizing constant for the binary classifier in Equation (2.5).

To compute the normalizing constant 𝒵 for this probability model, we can sum over the

binary values the random variable 𝑦𝑛 can take,

1 = ∑
𝑦𝑛∈{0,1}

exp (𝜎(𝑓(𝑥𝑛; 𝜽)) ⋅ 𝑦𝑛)
𝒵 (2.8)

⇒ 𝒵 = ∑
𝑦𝑛∈{0,1}

exp (𝜎(𝑓(𝑥𝑛; 𝜽) ⋅ 𝑦𝑛)) (2.9)

𝒵 = 1 + exp (𝜎(𝑓(𝑥𝑛; 𝜽))) . (2.10)

Inferenceof thenormalizingconstant𝒵 is straightforward in thisprobabilitymodel. The

random variable 𝑦𝑛 is binary, so there are only two terms in the sum needed to compute

the normalizing constant.

Next, consider computing the normalizing constant or partition function for the Ising

model inEquation (2.1). The randomvariables 𝑧𝑛 in thismodel also take onbinary values.

The partition function is computed by summing over all the values associated with all

random variables in the system, 𝐳 = {𝑧1, … , 𝑧𝑁 }:

1 = ∑
𝑧1∈{−1,+1}

… ∑
𝑧𝑁∈{−1,+1}

exp(−𝛽𝐸(𝐳))
𝒵 (2.11)

⇒ 𝒵 = ∑
𝑧1∈{−1,+1}

… ∑
𝑧𝑁∈{−1,+1}

exp(−𝛽𝐸(𝐳)) . (2.12)

There are𝑁 binary-valued randomvariables and 2𝑁 terms in the sumrequired tocompute

the partition function, so inference in the Ising model is difficult. For Ising models used

to studymaterials, the partition function is intractable to compute for most model sizes

practitioners want to study and compare to physical realizations.

One way to address the issue of an intractable partition function is with sampling meth-

ods, such as Markov chain Monte Carlo (Metropolis et al., 1953). These algorithms en-

able inference by simulating likely configurations of random variables. These samples of

likely configurations are used to approximate quantities of interest such as the partition

11



Figure 2.3: Variational inferencefinds thememberof the variational family closest
to the target distribution. The oval in the cartoon represents the space of variational
approximations 𝑞(𝐳; 𝝀), and the goal of variational inference is to find variational param-
eters 𝝀∗ that yield an approximation close to the target probability model 𝑝(𝐳). One way
to measure the distance between a variational approximation and the target probability
distribution is with the Kullback-Leibler (kl) divergence.

function. But, Markov chainMonte Carlo methods are difficult to scale to probabilistic

models with large numbers of correlated random variables. In this thesis, we instead use

variational inference, an approximate inference algorithm that relies on optimization in-

stead of sampling.

2.3 Variational Inference

Insteadofworkingwith aprobabilitymodel𝑝(𝐳)directly, variational inference (vi) posits
a family of distributions 𝑞(𝐳; 𝝀) indexed by parameters 𝝀 (Blei et al., 2017). The goal of

variational inference (vi) is to find the closest member of the variational family 𝑞 to the

target distribution 𝑝. The algorithm consists of varying the parameters 𝝀 to improve the

qualityof the approximation, as illustrated inFigure 2.3. Oneway tomeasure thedistance

between the variational approximation and the target distribution is with the Kullback-

Leibler (kl) divergence, or relative entropy (MacKay, 2003; Ranganath, 2018).

12



The intractable partition function in 𝑝(𝐳) appears in the kl divergence vi uses to assess

distance,

kl (𝑞(𝐳; 𝝀) ‖ 𝑝(𝐳)) = 𝔼𝑞[log 𝑞(𝐳; 𝝀)] − 𝔼𝑞[log𝑝(𝐳)] (2.13)

But it is possible to derive an objective function that does not depend on the partition

function, starting from thekl divergence. Taking the Isingmodel in Equation (2.1) as an

example,

kl (𝑞(𝐳; 𝝀) ‖ 𝑝(𝐳)) = 𝔼𝑞[log 𝑞(𝐳; 𝝀)] − 𝔼𝑞[log𝑝(𝐳)] (2.14)

kl (𝑞(𝐳; 𝝀) ‖ 𝑝(𝐳)) = 𝔼𝑞[log 𝑞(𝐳; 𝝀)] − 𝔼𝑞[−𝛽𝐸(𝐳) − log𝒵] (2.15)

log𝒵 = 𝔼𝑞[−𝛽𝐸(𝐳)] − 𝔼𝑞[log 𝑞(𝐳; 𝝀)] + kl (𝑞(𝐳; 𝝀) ‖ 𝑝(𝐳)) (2.16)

⇒ log𝒵 ≥ ℒ(𝝀) ≔ 𝔼𝑞[−𝛽𝐸(𝐳)] − 𝔼𝑞[log 𝑞(𝐳; 𝝀)] . (2.17)

This lower bound ℒ on the log normalizing constant is also called the evidence lower

bound (elbo), and serves as the objective function for vi. In deriving this lower bound

from Equation (2.16) to Equation (2.17), we used the fact that the kl is greater than or

equal to zero. To show this fact, we start from Jensen’s inequality for a convex function

𝑓, or

𝑓(𝔼[𝐳]) ≤ 𝔼[𝑓(𝐳)] . (2.18)

The logarithm in thekl is concave, so its negative is convex. Weapply Jensen’s inequality

to the negative kl in Equation (2.13):

−kl (𝑞(𝐳) ‖ 𝑝(𝐳)) = 𝔼𝑞 [log
𝑝(𝐳)
𝑞(𝐳) ] (2.19)

≤ log𝔼𝑞 [
𝑝(𝐳)
𝑞(𝐳) ] (2.20)

= log∫𝑞(𝐳)𝑝(𝐳)𝑞(𝐳) 𝑑𝐳 (2.21)

= log∫𝑝(𝐳)𝑑𝐳 (2.22)

= 0 . (2.23)
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This shows that the kl is greater than or equal to zero (Cover and Thomas, 2012).

The left-hand-side in Equation (2.17) does not change as the variational parameters 𝝀

are varied in ℒ(𝝀). In words, maximizing the lower bound ℒ(𝝀) is equivalent to mini-

mizing the kl divergence between the variational approximation and target probability

model.

2.3.1 Example: Mean Field Variational Inference in the Isingmodel

To demonstrate vi, we use the Ising model described in Section 2.1.1 with probability

distribution 𝑝(𝐳) defined in Equation (2.1) and energy function 𝐸(𝐳) in Equation (2.2). In-

specting the intractable partition function of the Isingmodel can help construct a varia-

tional family 𝑞(𝐳; 𝝀) to approximate the Ising model.

The Ising model partition function in Equation (2.12) is intractable because the sums do

not decompose by random variables: every sum must be carried out in order, because

the result of the𝑁th sumover the random variable 𝑧𝑁 depends on the results of the sums

over the previous 𝑁 − 1 random variables. This is because of interactions between de-

pendent random variables. The first term in the energy function of the Ising model rep-

resents nearest neighbor interactions, 𝑧𝑖𝑧𝑗, and is graphically equivalent to the links be-

tween nearest neighbors in Figure 2.1.

However, the second term in the Ising energy function in Equation (2.2), 𝐻∑𝑖 𝑧𝑖, does

decompose by random variable. Physically, this corresponds to a magnetic field applied

to the system as a whole, so every random variable is subject to the same force. Mathe-

matically, there is an outer sum over every configuration of random variables, and in this

term the results of the summation over a variable 𝑧𝑖 do not affect the summation over

another variable 𝑧𝑗. So this magnetic field term can be evaluated for systems with many

random variables.

The structure of the Ising model energy function and corresponding graphical model

can be used to build a variational approximation 𝑞(𝐳; 𝝀) as follows. If the second term of
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Figure 2.4: The structure of an Ising model can inform variational approxima-
tions. This graphical model illustrates aMarkov blanket in the Isingmodel of Figure 2.1.
The Markov blanket of a node is the set of nodes whose values need to be fixed to ren-
der a node independent of the rest of the graph. In an Ising model, only neighboring
random variables interact and therefore comprise the Markov blanket of a node. Here,
theMarkov blanket of the central node are shaded, indicating that their values are fixed.
The missing edges between the peripheral nodes indicate that the central node is inde-
pendent of the rest of the graph, conditional on itsMarkov blanket.

the Ising model energy function does not lead to an intractable partition function due

to every random variable being subject to a magnetic field, one can construct a varia-

tional approximation by extending this physical intuition and developing the concept of

a ‘mean field’. Consider the central random variable 𝑧𝑖 in Figure 2.1. Fixing the values of

its nearest neighbors renders this random variable independent of the rest of the graph

as shown in Figure 3.2. The nearest neighbors of the central random variable can then

be interpreted as giving rise to a magnetic field. The strength of this magnetic field is

unknown, so we can define this unknown strength as a variational parameter 𝛿𝐻 that we

will infer using vi. This mean field is additive to the external magnetic field 𝐻 applied

to the system as a whole, so the energy function for the central random variable 𝑧𝑖 under

this mean field assumption can be written

𝐸mf(𝑧𝑖; 𝛿𝐻) = 𝛿𝐻𝑧𝑖 + 𝐻𝑧𝑖 . (2.24)
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Note that we have replaced the interaction term 𝐽𝑖𝑗𝑧𝑖𝑧𝑗 in the Ising model energy func-

tion in Equation (2.2) by the mean field 𝛿𝐻. The mean field assumption is that term can

approximate the effects of neighboring nodes (Chandler andWu, 1987). If we repeat this

argument for every node in the graph, we arrive at the mean field energy function

𝐸mf(𝐳; 𝛿𝐻) = −(𝐻 + 𝛿𝐻)
𝑁
∑
𝑖=1

𝑧𝑖 . (2.25)

Theaboveconstruction starting fromthemeanfield assumptioncorresponds to thevari-

ational approximation with density

𝑞(𝐳; 𝛽, 𝛿𝐻) =
𝑁
∏
𝑖=1

exp(−𝛽𝐸mf(𝑧𝑖; 𝛿𝐻))
𝒵mf

, (2.26)

and we see that the variational parameter 𝝀 is simply the mean field strength 𝛿𝐻. The

mean field variational approximation corresponds to a fully factorized probability distri-

butionwhere every randomvariable is independent (Wainwright and Jordan, 2008). This

is a useful property, as the partition function is tractable in thismean field variational ap-

proximation: we can compute the partition function for every random variable by itself.

The partition function for a single random variable 𝑧𝑖 under the mean field assumption

is straightforward,

𝒵mf, i = ∑
𝑧𝑖∈{−1,+1}

exp(−𝛽(𝐻 + 𝛿𝐻)𝑧𝑖) (2.27)

= 2 cosh(𝛽(𝐻 + 𝛿𝐻)) , (2.28)

and the partition function for the variational approximation for all variables is simply

𝒵mf = 𝒵𝑁
mf, i. Similarly, the averageof a randomvariable under the variational distribution
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is readily computed as

𝔼𝑞(𝑧𝑖)[𝑧𝑖] = ∑
𝑧𝑖∈{−1,+1}

𝑧𝑖 exp(−𝛽𝐸mf(𝑧𝑖; 𝛿𝐻))
𝒵mf, i

= ∑
𝑧𝑖∈{−1,+1}

𝑧𝑖 exp(−𝛽(𝐻 + 𝛿𝐻)𝑧𝑖)
2 cosh(𝛽(𝐻 + 𝛿𝐻))

= − tanh(𝛽(𝐻 + 𝛿𝐻)) .

(2.29)

Now that we have constructed a variational family for the Ising model, we can proceed

with thevi algorithm. Thenext step iswriting downandmaximizing the lower boundon

the log partition function to minimize the kl between our approximating distribution

andmodel.

The lower bound on the log partition functionℒ(𝛿𝐻) in Equation (2.17) becomes

ℒ(𝛿𝐻) = 𝔼𝑞[−𝛽𝐸(𝐳)] − 𝔼𝑞[log 𝑞(𝐳; 𝛿𝐻)] (2.30)

= 𝔼𝑞 [−
1
2𝛽∑𝑖,𝑗

𝐽𝑖𝑗𝑧𝑖𝑧𝑗 − 𝛽𝐻∑
𝑖
𝑧𝑖] − 𝔼𝑞 [−𝛽(𝐻 + 𝛿𝐻)∑𝑧𝑖] + log𝒵mf (2.31)

= 𝔼𝑞 [−
1
2𝛽∑𝑖,𝑗

𝐽𝑖𝑗𝑧𝑖𝑧𝑗 + 𝛽𝛿𝐻∑
𝑖
𝑧𝑖] + log𝒵mf , (2.32)

and we can take the expectation inside the sum using the fact that the mean field varia-

tional distribution is fully factorized, so

ℒ(𝛿𝐻) = −12𝛽∑𝑖,𝑗
𝐽𝑖𝑗𝔼𝑞(𝑧𝑖)[𝑧𝑖]𝔼𝑞(𝑧𝑗)[𝑧𝑗] + 𝛽𝛿𝐻∑

𝑖
𝔼𝑞(𝑧𝑖)[𝑧𝑖] + log𝒵mf . (2.33)

(2.34)

In the first term, recall that two random variables 𝑧𝑖 and 𝑧𝑗 have the same distribution

under the mean field assumption, and that every variable interacts with its four nearest

neighbors in the Ising model. The lower bound on the log partition function then be-
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comes

ℒ(𝛿𝐻) = −12𝛽4𝐽𝑁𝔼𝑞(𝑧𝑖)[𝑧𝑖]
2 + 𝛽𝑁𝛿𝐻𝔼𝑞(𝑧𝑖)[𝑧𝑖] + log𝒵mf . (2.35)

The next step in the vi algorithm is maximizing this lower bound, to minimize the kl
divergence between the variational approximation and the model. Taking the deriva-

tive with respect to 𝛿𝐻 and suppressing the subscript of the expectation operator, we

get

𝜕ℒ(𝛿𝐻)
𝜕𝛿𝐻 = 𝑁𝛽(−4𝐽𝔼[𝑧𝑖]𝜕𝛿𝐻𝔼[𝑧𝑖] + 𝔼[𝑧𝑖] + 𝛿𝐻𝜕𝛿𝐻𝔼[𝑧𝑖]) + 𝑁𝛽 tanh(𝛽(𝐻 + 𝛿𝐻)) . (2.36)

Next, setting this derivative to zero and cancelling out terms (and using Equation (2.29))

leads to

0 = −4𝐽𝔼[𝑧𝑖]𝜕𝛿𝐻𝔼[𝑧𝑖] + 𝛿𝐻𝜕𝛿𝐻𝔼[𝑧𝑖]) (2.37)

⇒ 𝛿𝐻𝜕𝛿𝐻𝔼[𝑧𝑖]) = 4𝐽𝔼[𝑧𝑖]𝜕𝛿𝐻𝔼[𝑧𝑖] (2.38)

⇒ 𝛿𝐻∗ = 4𝐽𝔼[𝑧𝑖] . (2.39)

This shows thatunder ameanfieldassumption, thevariationalparameter thatmaximizes

the lower bound on the log partition function—and henceminimizes the kl divergence

between the approximation and model—is proportional to the mean field around any

node in the system. The structure of the model informs our choice of variational ap-

proximation.

The quality of the variational approximation 𝑞(𝐳; 𝛽, 𝛿𝐻∗) from vi can be assessed in sev-

eral ways. For example, the magnetization 𝑀 or the free energy 𝐹 can be calculated us-

ing the variational approximation, and these values can be compared to Markov Chain

Monte Carlo simulations in small systems. This can be viewed as a type of predictive

check for a vi algorithm (Blei, 2014). However, the development of theoretical guar-

antees to assess the quality of variational approximations found with vi is an open area
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of research (Wang and Blei, 2019). Practitioners must currently empirically evaluate the

qualityof variational approximations according to the taskathand, aswedo inChapters 3

and 5.

2.3.2 Variational InferenceOriginated in Statistical Physics

Previously, we derived a variational approximation to the Ising model by making a mean

field assumption. That the language of physics is used in machine learning algorithms

such as vi is no coincidence. In fact, Feynman (1972) and Feynman (2018) derives the

Gibbs-Bogoliubov-Feynman (gbf) inequality for use in a variational principle for ap-

proximating intractable partition functions using mean field assumptions. Consider a

model with energy function 𝐸 and partition function 𝒵, and a mean field variational ap-

proximationwith energy function𝐸mf (and corresponding partition function𝒵mf). Then

the gbf inequality reads (Feynman, 1972; Feynman, 2018)

𝒵 ≥ 𝒵mf exp (−𝛽 ⟨𝐸 − 𝐸mf⟩mf) . (2.40)

In physics, bra-ket notation is used to denote expectations. For example, expectations

with respect to Equation (2.26) are written ⟨ ⋅ ⟩mf. Rewriting the gbf with statistics no-

tation for the expectation 𝔼𝑞[ ⋅ ] yields

𝒵 ≥ 𝒵mf exp (−𝛽𝔼𝑞[𝐸 − 𝐸mf]) . (2.41)

Taking the logarithm, we recover the lower bound on the log partition function

log𝒵 ≥ 𝔼𝑞[−𝛽𝐸] − 𝔼𝑞[−𝛽𝐸mf] + log𝒵mf (2.42)

= 𝔼𝑞[−𝛽𝐸] − 𝔼𝑞[log 𝑞mf(𝐳; 𝝀)] (2.43)

= ℒ(𝝀) . (2.44)
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This is identical to the log partition function lower bound in Equation (2.17). Hoffman

et al. (2013) review the historical roots of the variational principle in itsmachine learning

incarnation.

To complete the connection to machine learning, we relate this log partition function

lower bound to the evidence lower bound studied in the vi literature (Blei et al., 2017). A
probabilistic model of data might have the following process for generating data 𝐱 using

prior information in latent variables 𝐳:

𝐳 ∼ 𝑝(𝐳)

𝐱 ∼ 𝑝(𝐱 ∣ 𝐳)

The posterior distribution of this model is computed using Bayes’ rule,

𝑝(𝐳 ∣ 𝐱) = 𝑝(𝐱 ∣ 𝐳)𝑝(𝐳)
𝑝(𝐱) .

The model evidence 𝑝(𝐱) is the partition function of the posterior. Calculating the par-

tition function is whatmakes posterior inference difficult, as it requires integration over

the latent variables 𝐳,

𝑝(𝐱) = ∫𝑝(𝐱, 𝐳)𝑑𝐳 ,

and the latent variables 𝐳 are typically high-dimensional, such as the number of random

variables in an Ising model. But vi can be used to approximate this intractable inte-

gral. The lower bound on the log partition function becomes the evidence lower bound

(elbo):

log𝑝(𝐱) ≥ ℒ(𝝀) (2.45)

ℒ(𝝀) = 𝔼𝑞[log𝑝(𝐱, 𝐳)] − 𝔼𝑞[log 𝑞(𝐳; 𝝀)] . (2.46)
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An example of a latent variable model without data is the Ising model—in this case, the

data is an empty set, 𝐱 = {}. In this caseℒ(𝝀) is a lowerboundon the logpartition function

as we derived in Equation (2.17) and identical to the gbf inequality.

2.4 Conclusion

We reviewed probability models and gave examples of their use in statistical physics and

recommender systems. The task of inference is central toworkingwithprobabilitymod-

els; we described variational inference and maximum likelihood estimation. The fol-

lowing chapters address the issue of building the structure of a problem into a perfor-

mant probability model, whether that structure concerns the connectivity in a statisti-

cal physics model, the structure of datapoints in a recommender system, or information

about a variational approximation useful in an optimization algorithm for this approxi-

mation.
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Chapter 3

Hierarchical VariationalModels

for Statistical Physics

s probabilistic modeling finds widespread use in science, it is necessary to

adapt machine learning tools to the specifics of a scientific domain. In

this chapter we focus on probabilistic models used in statistical physics.

Whether such models are used in molecular dynamics simulations for finding drug can-

didates for disease (Shamay et al., 2018) or simulating solid state systems for materials

design (Schmidt et al., 2019), the scalability of machine learningmethods is a bottleneck

for progress. Simulations need to be run for longer timescales and in larger systems, and

must leverage knowledge about the physical system under study to yield accurate pre-

dictions. As a step in this direction, this chapter centers on building scalable variational

approximations for statistical physics models, and develops hierarchical probabilistic

models to study their performance in large statistical physics systems.

3.1 Introduction

In statistical physics, building amodel corresponding to a physical system is useful: com-

paring how the model’s predictions differ from experiment can be used to understand
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how a system behaves. For computing properties corresponding to a model’s behavior,

the normalization constant of the model’s Boltzmann distribution in Equation (2.1) is

a central quantity. The partition function can be used to derive properties of physics

models that can be measured in experimental realizations, such as specific heat or mag-

netization. Such properties of models can be compared to experimental values, which

can inform how a model might be improved to better mirror reality. But the partition

function is intractable for many probabilistic models of interest, as described in Chap-

ter 2.

One workaround to the problem of an intractable partition function is to use an approx-

imate inference algorithm such as Markov chain Monte Carlo (mcmc). mcmc relies on

sampling likely configurations of a system and does not require calculating the partition

function. In theory, these samples will be draws from the probability model of inter-

est (Metropolis et al., 1953; Andrieu et al., 2003). For example, samples from the Boltz-

manndistribution canbeused to approximatephysical quantities derived fromtheprob-

ability model, such as specific heat.

However, with limited computationmcmc has limitations. This method requires prac-

titioners to use convergence diagnostics (Brooks and Gelman, 1998) to assess whether

samples from the algorithm are independent. Scalablemcmc requires careful consider-

ation. While some scalable versions of mcmc have been developed (Neal et al., 2011;

Welling and Teh, 2011), they are biased samplers that may not have guaranteed conver-

gence to samples from the probabilitymodel of interest. This is similar to how in vi per-
formance must often be assessed empirically. But in comparison to vi, unless a model-

specific algorithmhas beendeveloped (Wolff, 1989), genericmcmcmethods donot read-

ily scale to large numbers of random variables.

In Chapter 2 we showed that the machine learning framework of vi is equivalent to

the Gibbs-Bogoliubov-Feynman variational principle. This has allowed practitioners to

study statistical physics models using many variational approximations, including vari-

ational autoregressive networks (vans). As an example of a variational method enabled
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by vi, we study hierarchical variational models (hvms) as approximations to the Boltz-

mann distribution of statistical physics models. We find that hvms scale to larger sys-

tems sizes thanvans inSherrington-KirkpatrickandIsingmodels. Testing the feasibility

of vimethods in statistical physics is a twofold opportunity. Statistical physics problems

might serve as benchmarks for vi, and using vi for these problems can lead to improved

computational methods in statistical physics.

RelatedWork. The gbf variational principle has been used to studyMarkov random

fields (Zhang, 1996) and the connection between variational inference and statistical

physics has beenwell-documented (Blei et al., 2017; Hoffman et al., 2013;MacKay, 2003).

But this equivalence between vi and the gbf inequality might serve as an introduction

to vi for physicists. Wu et al. (2019) implicitly use vi, by developing vans and a rein-

forcement learning policy gradient algorithm (however, vi is not mentioned). Further,

for a system of size 𝐿, autoregressive neural networks require 𝒪(𝐿2) forward passes to

sample a system configuration, making vans intractable in larger systems. The use of

hvms can be advantageous for statistical physics as these models can sample from a

system in𝒪(𝐿) time and yield results for larger systems.

Variational Inference. vi is equivalent to the gbf variational principle and requires

similar choices of a practitioner. The variational family 𝑞(𝐳; 𝝂) to approximate a model

must be chosen, in addition to a method to maximize the variational lower bound in

Equation (2.17).

The vi literature provides several choices of variational family, such as a mean field, fac-

torized variational distribution with independent latent variables. Another choice of

variational family is the Bethe approximation, which constrains the variational distri-

bution to the polytope of mean parameters that captures correlations between any two

latent variables (Wainwright and Jordan, 2008). Somemachine learning research focuses

on developing variational approximations that capture correlations between latent vari-

ables (Hoffman and Blei, 2015; Kingma et al., 2016; Maaløe et al., 2016; Wu et al., 2019).
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Figure 3.1: Hierarchical variational models (hvms, left) capture dependencies be-
tween latent variables, compared to the mean field variational family with inde-
pendent variables (right).

Anexample of a variational family that canmodel correlations between latent variables is

thevan family (Wuet al., 2019), whichuses autoregressive neural networks toparameter-

ize the variational distribution 𝑞(𝐳𝑖 ∣ 𝐳1, … , 𝐳𝑖−1). We explore thehvm class of variational

approximations (Ranganath, 2018).

The second choice required to employ vi is how to optimize the variational lower bound

in Equation (2.17). The choice of variational family can limit the available optimization

techniques. For a simple variational family like the mean field approximation, it may be

possible to analytically evaluate the expectations in Equation (2.17). Then derivatives of

the variational boundwith respect to the variational parameters 𝝂 andmanual calculation

canmaximize the lower bound, as derived in Section 2.3.1. If more expressive variational

families are used (e.g. vans with thousands or millions of variational parameters), the

analytic approach is infeasible. Stochastic optimization and automatic differentiation

software have been used to develop several approaches to computing gradients of the

variational lower bound, such as black box variational inference (Ranganath, 2018; Mo-

hamed et al., 2019).
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Thechoiceof variational family 𝑞(𝐳; 𝝂) andoptimizationmethod formaximizing the vari-

ational lowerbound leads toa trade-off intrinsic tovi. Simple variational approximations

such as the mean field family may be computationally feasible but inaccurate. The cost

of increased accuracy, say by using a structured variational approximation, is increased

computation. We illustrate the use of vi in statistical physics by comparing two choices

of variational approximation,hvms (Ranganath, 2018) and vans (Wu et al., 2019). Many

other variational approximations can be explored in future work.

3.2 Hierarchical VariationalModels

For studying models with correlated random variables, such as frustrated spin sys-

tems (Zdeborová and Krzakala, 2016), unstructured variational families such as the

mean field are insufficient. Hierarchical variationalmodels (hvms) are oneway tomodel

correlated latent variables. An hvm is defined by placing a ‘variational prior’ on the

variational parameters 𝝂 of the mean field variational family, in analogy to hierarchical

probabilistic models. By leveraging neural networks to parameterize the variational

prior, hvms can capture complex dependencies between random variables (Ranganath,

2018).

For studying amodel 𝑝(𝐱, 𝐳), the variational family defined by anhvm is defined as

𝑞hvm(𝐳; 𝜽) = ∫𝑞(𝝂; 𝜽)∏
𝑖
𝑞(𝐳𝑖 ∣ 𝝂𝑖)𝑑𝝂 , (3.1)

where 𝑞mf(𝐳 ∣ 𝝂) = ∏𝑖 𝑞(𝐳𝑖 ∣ 𝝂𝑖) is the mean field ‘variational likelihood’ with parameters

𝝂, and 𝑞(𝝂; 𝜽) is the variational prior with parameters 𝜽. Figure 3.1 shows the graphical

model forhvms as compared to the mean field family graphical model.

To use anhvm in vi, the variational lower boundmust be optimized. But the variational

lower bound in Equation (2.17) requires calculating the entropy of the variational distri-

bution, and such integration in high dimensions can be intractable. As detailed in Ran-

ganath (2018), the entropy can be lower-bounded by introducing an auxiliary ‘variational
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Figure 3.2: TheMarkov blanket of a node in an Ising model consists of the node’s
nearest neighbors (nodes in the Markov blanket of the central node are shaded).
Conditioning on theMarkov blanket of a node in a graphicalmodel renders it condition-
ally independent of the rest of the variables. This enables building efficient variational
approximations.

posterior’ distribution 𝑟(𝝂 ∣ 𝐳; 𝝓) with parameters 𝝓. This leads to the hierarchical evi-

dence lower bound,

ℒ̃(𝜽, 𝝓) = 𝔼𝑞(𝐳,𝝂;𝜽)[log𝑝(𝐱, 𝐳) + log 𝑟(𝝂 ∣ 𝐳; 𝝓) − log 𝑞(𝐳 ∣ 𝝂) − log 𝑞(𝝂; 𝜽)] , (3.2)

and a stochastic optimization algorithm for this objective is developed in (Ranganath,

2018). viwith anhvm requires specifying the variational prior 𝑞(𝝂; 𝜽) and the variational

posterior 𝑟(𝝂 ∣ 𝐳; 𝝓), then optimizing the hierarchical elbo in Equation (3.2).

Specifying anhvmwithNormalizingFlows. Westudy several choices of variational

prior and recursive variational posterior. One choice of variational prior 𝑞(𝝂; 𝜽) is an in-

verse autoregressive flow (Kingma et al., 2016). If the variational posterior 𝑟(𝝂 ∣ 𝐳; 𝝓)

is chosen to be a masked autoregressive flow (Papamakarios et al., 2017), the analytical

forms of these flows are equivalent. These choices lead to a complexity of 𝒪(𝐿) for sam-

pling latent variables in a systemof size 𝐿. (This is because the noise used to sample from

the variational prior can be drawn in parallel.) hvms should therefore be faster than van
approximations in large systems: the autoregressive requirement in vans leads to a com-
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HVM, N = 1048576
VAN, N = 1024
VAN, N = 4096
Exact

Figure3.3: Hierarchical variationalmodels (hvms) scale tostatisticalphysicsmod-
els with millions of random variables, with over 100x parameter savings. The free
energy is reported (the variational lower bound yields an upper bound on the free en-
ergy). Thehvm variational approximations use 5400 parameters, while the vanmethod
uses over 700k.

plexity of𝒪(𝐿2). A research question is whether the advantage in speed of hvms leads to

a drop in accuracy that is too large to answer a statistical physics question.

Scalable hvms using Ising Model Structure. Although hvms with autoregressive

flows scale linearly, such variational approximations do not leverage the structure about

the statistical physics under study. For example, it is difficult to index random variables

so that nearest neighbors are grouped together when fed to an autoregressive model.

However, consider theMarkov blanket of a random variable in the Ising model—it con-

tains all the information needed to render a variable conditionally independent of the

rest of the model. The Markov blanket of a node in an Ising model consists of a node’s

nearest neighbors and is shown in Figure 3.2. This means that an autoregressive model is

overparameterized. For example, the last variable to be fed to the model depends on all

the previous in an autoregressive model, whereas an efficient model might only consider

nodes in aMarkov blanket. A convenient way to build this structure into anhvmwould

ensure efficient use of information from nearest neighbors in the Ising model. One way

to formalize this problem structure is with convolutional neural networks (LeCun et

al., 2015). We parameterize the variational prior and recursive posterior with real non-

volume preserving (realnvp) transformations using a convolutional neural network ar-
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Figure 3.4: Hierarchical variational models (hvms) are faster than Variational au-
toregressivenetworks (vans) (Wuet al., 2019) and scale to larger systems. The scal-
ing of both variational approximations is illustrated with the time taken per iteration
in Ising models. The hvm variational approximations use 5400 parameters and the van
method uses over 700k. The van approximation runs out ofmemory with 16384 random
variables, while thehvmmethod scales to models with over 1Mrandom variables.

chitecture (Dinh et al., 2017). Specifically, we parameterize the convolutional kernels to

mimic theMarkov blanket shown inFigure 3.2: for every node, only its nearest neighbors

are conditioned on.

3.3 Empirical Study

To study the utility of vi tools for statistical physics systems, we compare hvms to van
approximations (Wu et al., 2019).1 We use the same benchmarks as in Wu et al. (2019):

the models of Ising and Sherrington-Kirkpatrick. We evaluate variational inference

methods by assessing whether they lead to lower estimates of the free energy of amodel.

(Lower is better, as the free energy in Equation (2.4) is proportional to the negative of

the variational lower bound in Equations (2.17) and (3.2).)

Experimental Setup. To assess whetherhvms outperform vans in large systems, the

computational budget for the vi algorithm using both variational approximations was

set to 6 hours. All experiments were performed onNVIDIATesla P100GPUs, and the

1Code is available at https://github.com/altosaar/hierarchical-variational-models-physics.
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reference implementation of vans released in Wu et al. (2019) was used. van models

were unable to complete sufficiently many iterations in the allocated compute time, so

all experiments were run without annealing the temperature of the system. For calcu-

lating the free energy using hvms, importance sampling (Owen, 2013) was used with an

hvm as theproposal (forvans, the increasedcostof samplingprohibiteddrawingenough

samples for low-variance importance sampling estimates, soMonteCarlo estimationwas

used). Inhvms, variational approximations that accounted for problem structure using

realnvp transformations outperformed autoregressive parameterizations, andweomit

these results.

Ising Model. For small systems, hvms were more accurate than vanmodels at lower

temperatures; at higher temperatures (such as the critical temperature), van models

were slightly more accurate. This could be because annealing was not used to fit van
models, and the randomness of the hierarchical latent variables in hvms obviates the

need for annealing. In large systems (e.g. 𝐿 = 128), van models failed to complete a

single iteration, while hvms were able to complete many iterations (at the cost of some

accuracy). The trade-off between model size and computational cost was significant

between autoregressive choices of variational approximations inhvms versus realnvp
convolutional approximations. Figure 3.3 shows that convolutional models were able

to scale to models with over a million random variables, with only a slight decrease in

accuracy relative to van methods, and with 100 times fewer parameters. This is also

illustrated via the time per iteration for both a van and hvm variational approximation

reported in Figure 3.4.

Sherrington-Kirkpatrick Model. The free energy estimates using vi with either

hvm or van approximations are plotted in Figure 3.5 for the Sherrington-Kirkpatrick

model. hvm approximations outperformed van approximations, and scaled to larger

systems where the 𝒪(𝐿2) cost of sampling from a van prohibited even a single itera-

tion.
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HVM, N = 4096
HVM, N = 16384
VAN, N = 4096

Figure 3.5: Hierarchical variational models (hvms) scale to larger systems than
variational autoregressive network (van) models (Wu et al., 2019) when fit to the
Sherrington-Kirkpatrick model using variational inference. (Lower is better, as
the variational lower bound yields an upper bound on the free energy.) For the system
with 𝑁 = 4096 variables the vanmethod completed fewer than ten iterations, and with
𝑁 = 16384 did not complete a single iteration.

3.4 Discussion

Thegbf inequality holds for quantum systems (Feynman, 1972; Feynman, 2018), and ap-

plying vi and hvms to quantum systems is a direction for future work. Physics tools

(such as vi in its original incarnation) have been useful in machine learning (Bamler et

al., 2017), and we hope the reverse holds—that tools from machine learning such as vi
and hvms continue to find use in statistical physics. Further scaling hvms to statistical

physicsmodelswhere systemsize is a bottleneck is a goal of futurework, especially in set-

tings relevant to medicine, such as in protein folding or drug screening problems.
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Chapter 4

RankFromSets: Scalable Set

Recommendation withOptimal

Recall

n the previous chapter, we built scalable and performant probabilistic mod-

els of likely configurations of interacting atoms in statistical physics systems.

Modeling choices were guided by the structure of the underlying patterns of

interaction between random variables. As another case study, we turn to recommender

systems in this chapter, where the core problem is to model which items a user is likely

to interact with. By building the structure of individual datapoints into a probabilistic

model of user interaction, and considering the goals of the recommendation task, we de-

velop a scalable, accurate framework for recommending items with attributes.

4.1 Introduction

Classical recommender system datasets contain a matrix where each row is a user and

each column is an item. Each entry in the matrix indicates whether or not a user con-

sumed an item. Modern applications often gather rich side information about items in
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Attributes Users
Items Pizza Eggs Taco Salad Avocado Chicken Sardines Beer Coffee 1 2 3 4 5
Morning Pizza • • • • •
Dinner Pizza • • • • •
Small Salad • • • • •
Big Salad • • • • • • •
Taco • • • • •
Fish Taco • • • •
Table 4.1: An example of the data we focus on, where tagged items are recommended
to users based on both item attributes and items users have consumed in the past. This
example dataset of meals contains meals with different foods (left) and users log which
meals they ate (right). The goal is to leverage the attributes to recommend items to users.

the form of a set of attributes or tags. Item attributes provide valuable side information

for recommender systems. With a large number of items or a sparse user-item matrix,

attribute information is necessary for good performance.

We are motivated by a specific dataset with these properties: a dataset of 55k users log-

ging 16M meals using the LoseIt! diet tracking app. Table 4.1 shows the kind of data

logged by users, where each row is an item (meal), each left-hand column is an attribute

(food), and each right-hand column is a user. The food attributes can clearly inform rec-

ommendations: User 1 does not log meat, User 4 is omnivorous and undiscriminating,

and User 3 mostly eats salads. In the LoseIt! data, there is a massive number of possi-

ble items to recommend: there are 12Muniquemeals, composed of subsets of 3M foods.

Meals containing only a few foods, or those ordered at chain restaurants, may be logged

by many users. But these represent a small proportion of the meals people actually eat,

so a long tail of meals are logged by single users.

Modeling item attributes in these non-standard recommender systems is not straight-

forward. Popular ways to use item attributes like multiple matrix factorization (Wang

and Blei, 2011; Gopalan et al., 2014) struggle when the attribute vocabulary or number of

items is large. Conversely, simple models are computationally tractable but risk losing

the ability to capture nonlinear patterns of user consumption. For instance, a user may

enjoy meals tagged with foods A and B, B and C, or A and C, but not all three. Finding the

right balance between scalability and flexibility is therefore a primary goal.
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Even when a model can be scaled, it may not be clear how its training procedure con-

nects to the recommender system evaluation metric. A matrix factorization method

might minimize mean squared error when the recommender system is evaluated on re-

call. While it is plausible that minimizing mean squared error will improve recall, the

connection between the two is implicitly assumed in many methods. Ideally, a recom-

mender system should have an objective that matches its evaluation metric.

This paper proposesrankfromsets (rfs), a class of principled, scalablemodels for rec-

ommending items with sets of attributes. rfs casts the recommendation problem as bi-

nary classification. Given a user and an item, rfs treats attributes as features and classi-

fies whether or not the item is likely to be consumed by the user. rfs learns embeddings

for each user and attribute; each item is represented as the mean of its attribute embed-

dings. To scale to large datasets, we develop anrfsmethod that is trained using negative

sampling of random items that are unlikely to be consumed.

rfs enjoys two benefits from framing the recommendation problem as classification.

First, the rfs classification objective function is directly tied to recommender recall: we

show that a classifier with zero worst-case error achieves maximum recall. Second, rfs
is provably flexible enough to learn any class of recommendation model based on set-

valued side information (includingmultiplematrix factorization). This generalitymakes

rfs a natural drop-in replacement for many specialized models in the literature.

We study the performance of the negative sampling rfs model on a semi-synthetic

benchmark dataset and the LoseIt! dataset. The semi-synthetic paper recommen-

dation dataset consists of 65k users clicking on 636k papers posted to the arXiv; the

attributes of each paper are the unique words in its abstract. We then apply the method

to the LoseIt! dataset to make out-of-sample meal recommendations. In both cases,

the rfsmethod outperforms the state of the art in terms of recall. In addition to good

performance, the rfs model learns interpretable embeddings that intuitively capture

the structure of the underlying data.
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Figure 4.1: rankfromsets trained on arXiv reading behavior clusters re-
searchers by their most frequently-read arXiv category (best viewed on a screen).
rfs is trained to recommend items using their attributes (words in the abstract). t-
SNE (Maaten andHinton, 2008) is used to visualize the user embeddings 𝜃ᵆ in the inner
product regression function inEquation (4.2). Eachmarker represents auser embedding;
its color represents a user’s most-read arXiv category. Unique colors are determined us-
ing the most-read categories across the arXiv, and colors are assigned according to the
arXiv ontology. rfs captures usage patterns, as fields of study are related by patterns of
reading behavior across neighboring fields (e.g. stat.ML and cs.IT).
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4.2 RankFromSets

rankfromsets (rfs) is a class of recommendationmodels that recommend itemswith

attributes to users. Let 𝑢 ∈ {1, … , 𝑁} be a user,𝑚 ∈ {1, … ,𝑀} be an item, and 𝑦ᵆ𝑚 ∈ {0, 1}

be a binary indicator where 1 indicates user 𝑢 consumed item𝑚. For each item𝑚, there

is an associated set of attributes 𝑥𝑚 ∈ {0, 1}|𝑉 | from a vocabulary of 𝑉 attributes. The

observed data is a collection of user-item interactions {(𝑢,𝑚)} and the sets of attributes

associated with items {𝑥𝑚}.

We assume that a recommendationmodel is given a budget of𝐾 recommendations to be

made for each user. In response, the recommender system produces a list of 𝐾 distinct

recommendations rᵆ = (𝑟 1, … , 𝑟 𝐾) for each user. The goal of the recommendation task

in this paper is to maximize the expected Recall@𝐾,

Recall@𝐾 = 𝔼ᵆ [
∑𝑟∈r𝑢 𝑦ᵆ𝑟
∑𝑚 𝑦ᵆ𝑚

] , (4.1)

with the expectation over users in the empirical distribution𝒟.

Wecombine three techniques tomaximizeRecall@𝐾withrfs. First, we cast recommen-

dation as a classification task. Second, we learn user- and attribute-level embeddings.

Statistical strength is shared between itemswith similar attributes by representing items

as the mean of their attribute embeddings. Third, we scale rfs to large datasets using a

stochastic optimization-based negative sampling training procedure.

rfs casts the recommendation problem as a classification task. Given a user-item pair

(𝑢,𝑚) and regression function 𝑓, rfs learns to predict the probability that item𝑚will be

consumed by user 𝑢:

𝑝(𝑦ᵆ𝑚 = 1 ∣ 𝑢,𝑚) = 𝜎 (𝑓 (𝑢, 𝑥𝑚)) ,

where 𝑥𝑚 is the set of attributes of item𝑚 and 𝜎 is the sigmoid function. Recommenda-

tions made by rfs are the maximum likelihood set formed by ranking a set of items for
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a user according to the model 𝑓(𝑢, 𝑥𝑚). Wemotivate treating recommendation as classi-

fication with the following observation.

Proposition 1. Let 𝑢 ∈ 𝒰 be a user, 𝑚 ∈ ℳ be an item, and 𝑦(𝑢,𝑚) ∈ {0, 1} be an indicator
of whether user 𝑢 logged item 𝑚. Let ℰ be the worst-case error for binary classifier ̂𝑦(𝑢,𝑚) on
any (𝑢,𝑚) pair drawn from the data𝒟,

ℰ = max
(ᵆ,𝑚)∈𝒟

𝟙 [ ̂𝑦(𝑢,𝑚) ≠ 𝑦(𝑢,𝑚)] .

A binary classifier with zero worst-case error (ℰ = 0) maximizes recommendation recall.

Proof. A model with zero worst-case error is a perfect classifier, assigning greater prob-

ability to data with positive labels than to data with negative labels. In other words, it

ranks positive examples above negative examples. Recall@𝐾 is measured by the frac-

tion of items with positive labels in a ranking returned by the model. In a classifier that

achieves zero worst-case error, positively-labeled datapointsmust be ranked higher than

other datapoints, maximizing recall.

Proposition 1 is simple, but conceptually important. Under the assumption that aperfect

classifier exists, a consistent method for learning a classifier will be a consistent method

for learning a recommendation system that targets expected recall. Put another way,

recall is inherently binary: a model does or does not recall an item; an item is or is not

in the top 𝐾 recommendations in the numerator of Equation (4.1). So the best one can

hope to do if recall is used to assess recommendation performance is to train a binary

classifier. In practice, as with any regressionmethod, a perfect classifier is unachievable.

Proposition 1 is a guiding principle rather than a finite-sample guarantee ofmaximal per-

formance. As we show in Section 4.4, the classification approach of rfs performswell in

practice.

For recommending itemswith attributes, Proposition 1 says thatbuilding a classifier such

as rfs is optimal if we measure recommendation performance with recall. To parame-
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terize the rfs classifier, a regression function 𝑓(𝑢, 𝑥𝑚) is needed. A straightforward pa-

rameterization is an inner product,

𝑓 (𝑢, 𝑥𝑚) = 𝜃⊤ᵆ (
1

|𝑥𝑚|
∑
𝑗∈𝑥𝑚

𝛽𝑗 + 𝑔(𝑥𝑚)) + ℎ(𝑥𝑚) . (4.2)

Each element in the inner product regression function in Equation (4.2) has an intuitive

interpretation. The user embedding 𝜃ᵆ ∈ ℝ𝑑 captures the latent preferences for user 𝑢.

This captures the individual-level tastes of a user and is analogous to the user preference

vector in classical collaborative filtering or the row embedding in matrix factorization.

The attribute embedding 𝛽𝑗 ∈ ℝ𝑑 is the latent quality conveyed through item 𝑚 having

attribute 𝑗. (The set 𝑥𝑚 contains only attributes with 𝑥𝑚𝑗 = 1. Attributes that are not as-

sociated with item𝑚 are ignored.) The item embedding function 𝑔(𝑥𝑚) ∈ ℝ𝑑 represents

qualities not conveyed through the set of item attributes. This term in the regression

function enables collaborative filtering by capturing unobserved patterns in item con-

sumption such as popularity. We describe how to construct this function below. The

scalar item intercept function ℎ(𝑥𝑚) ∈ ℝmakes an item more or less likely due to avail-

ability.

To define scalable item embedding and item intercept functions, note that the parame-

terization of the item embedding function 𝑔(𝑥𝑚) depends on the size of the data. If the

number of items is small, 𝑔 can function as a lookup for unique intercepts for every item.

However, if the number of items is so large that unique item intercepts lead to overfit-

ting, a scalable parameterization of item embeddings 𝑔 can be defined using additional

information about every item. For example, if the data consists of foods in meals, we

can define ameal intercept as themean of food intercepts, yielding a scalable item inter-

cept function. The item intercept function ℎ(𝑥𝑚) that maps item attributes to scalars is

constructed in the same way. We study both of these choices in Section 4.4.

The inner product regression function in Equation (4.2) has several benefits. It requires

computing a sum over only the attributes with which each item is associated. This en-
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Query Item Nearest Item by Cosine Similarity
Two scoops of Raisin Bran cereal, organicMo-
roccan green tea, almond milk, light honey,
tap water, large banana, large strawberries

Vita Bee bread, salted butter, fresh medium
tomatoes, large fried whole egg, small banana

Iceberg lettuce, cantaloupe cubes, diced hon-
eydew melon, cherry tomatoes, olives, dry-
cooked unsalted hulled sunflower seed ker-
nels, chopped hard-boiled egg, cucumbers,
dried cranberries, fat-free ranch dressing

Green leaf lettuce, chopped sweet red bell
peppers, crumbled feta cheese, large hard-
boiled egg, chopped cucumber, oil-roasted
salted sunflower seeds, sliced radishes, sliced
strawberries, pitted Calamata olives, fat-free
balsamic vinegar

Boston roast pork,mackerel, artichokehearts,
spinach, pimiento-stuffed Manzanilla olives,
carrots, mushrooms, peppercorn ranch dress-
ing

Broiled top round steak, tomatoes, cucumber,
baby yellow squash, zucchini, black olives, ex-
tra virgin olive oil

Meatloaf with tomato sauce, chopped sweet
red bell peppers, extra virgin olive oil, cooked
asparagus spears, sweet potatoes, orange, can-
taloupe cubes

Chickenbreast, breadcrumbs, fresh tomatoes,
shredded green leaf lettuce, extra virgin olive
oil, spinach, choppedyellowonion, sweet large
yellow bell peppers, whole mushrooms, chili
peppers, vinaigrette

Ciabatta bun, cooked skinless chicken breast,
fresh baby spinach, shredded iceberg lettuce,
shredded mozzarella cheese, ketchup, frozen
yogurt bar

Small whole wheat submarine roll, broiled
round roast beef, roasted light turkey meat
without skin, fresh medium tomatoes, honey
smoked ham, shredded iceberg lettuce, sliced
mozzarella cheese

Table 4.2: rankfromsets trained on food consumption data provides diverse
meal recommendations. rfswith Equation (4.4) is fit to data from a diet tracking app;
items are meals and attributes are the ingredients in the meal. Meals are represented
the average of their attribute embeddings, and cosine similarity betweenmeal represen-
tations is used to find the nearest neighbors of meals (user-level information cannot be
shown as this is personal diet data). rfs reveals eating patterns: for example, the second-
last query meal is a mix of meat, vegetables, and fruit, and the nearest neighbor meal is
a different meat with a side of salad; the last query meal is a sandwich, and its nearest
neighbor is also a sandwich with different ingredients.

ables rfs to scale to large attribute vocabularies where traditional matrix factorization

methods are intractable. Second, the embed-and-average approach to set modeling is

provably flexible as we show later. We now describe deep variants of rfs and detail how

rfs can approximate other recommendation models.

The rfs inner product regression function in Equation (4.2) is a log-bilinear model. But

there are several other choices of regression function, and we draw on the deep learn-

ing toolkit for classification to build two other example architectures. With finite data
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and finite compute, one architecture may outperform another, or prove insufficient to

capture patterns in user consumption. (Later, we show that all architectures are equiva-

lent under fewer assumptions.) First, as an alternative to the log-bilinear model in Equa-

tion (4.2), we can use a deep neural network as a regression function:

𝑓 (𝑢, 𝑥𝑚) = 𝜙(𝜃ᵆ,
1

|𝑥𝑚|
∑
𝑗∈𝑥𝑚

𝛽𝑗, 𝑔(𝑥𝑚)) + ℎ(𝑥𝑚) , (4.3)

where the deep network 𝜙 has weights and biases and takes as inputs the user embed-

ding, sum of attribute embeddings, and item intercept. Such a neural network can rep-

resent functions thatmay ormay not include the inner product in Equation (4.2); ex ante,
it is unclear whether a finite-depth, finite-width neural network can represent the inner

product.

Another regression function for rfs is a combination of Equations (4.2) and (4.3), using

an idea borrowed from deep residual networks for image classification (He et al., 2016).

In this architecture, a neural network 𝜙 with the same inputs as in Equation (4.3) learns

the residual of the inner product model:

𝑓 (𝑢, 𝑥𝑚) = 𝜃⊤ᵆ (
1

|𝑥𝑚|
∑
𝑗∈𝑥𝑚

𝛽𝑗 + 𝑔(𝑥𝑚)) + 𝜙 + ℎ(𝑥𝑚) . (4.4)

The choice of regression function in rfs depends on the data. On finite data, with fi-

nite compute, one parameterization of rfs will outperform another. To demonstrate

this, we simulated synthetic data from the same generative process rfs employs with a

ground-truth regression function (a square kernel), and found that the residual and deep

parameterizations outperformed the inner product architecture. These results are in-

cluded in Section 4.7.4, andmotivate exploring other architectures than the three exam-

ples here.

Stepping back from the setting of finite data and compute, a bigger picture emerges,

which reveals the choice of regression function inrfsdoes notmatter. We show that any
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rfs architecture is sufficiently flexible to approximate recommendationmodels that op-

erate on set-valued input. We define permutation-invariant models before deriving this

result.

The regression function 𝑓 in rfs operates on set-valued input: the unordered collec-

tion of item attributes 𝑥𝑚. A set is, by definition, permutation-invariant: it remains

the same if we permute its elements. Functions that operate on set-valued inputs must

also be permutation-invariant. rfs is permutation-invariant; the set of attributes as-

sociated with an item enter into Equations (4.2) to (4.4) via summation. Other exam-

ples of permutation-invariant recommendation models are multiple matrix factoriza-

tion, models based on word embeddings, and permutation-marginalized recurrent neu-

ral networks. These models are shown to be permutation-invariant in Section 4.3 and

evaluated in Section 4.4. We now show that rfs can approximate other permutation-

invariant recommendation models such as matrix factorization.

Proposition 2. Assume the vocabulary of attributes (set elements) is countable, |𝑉| < |ℕ0|. Then
rfs can approximate any permutation-invariant recommendation model.

The proof follows directly fromTheorem 2 in Zaheer et al. (2017) and wewill not restate

it here. (The only change to the proof is the mapping from set elements to one-hot vec-

tors, 𝑐∶ 𝑉 → {0, 1}|𝑉 | to yield a unique representation of every object in the powerset.)

Proposition 2means that any of the parameterizations in Equations (4.2) to (4.4) is flexi-

ble enough to approximate other principled recommendationmodels that leverage item

attributes, such as multiple matrix factorization (Gopalan et al., 2014; Wang and Blei,

2011).

The parameters for rfs are learned by stochastic optimization. Denote the full set of

rfsmodel parameters by𝜸, and let𝒟ᵆ be the empirical data distribution for a user. Let 𝜆ᵆ
be a reweighting parameter. The per-usermaximum likelihood objective forrfs is

ℒ(𝜸, 𝜆ᵆ) = 𝔼ᵆ[𝔼𝑚∼𝒟𝑢∣𝑦𝑢𝑚=1 [log𝑝(𝑦ᵆ𝑚 = 1 ∣ 𝑥𝑚; 𝜸)] + 𝜆ᵆ𝔼𝑘∼𝒟𝑢∣𝑦𝑢𝑘=0 [log𝑝(𝑦ᵆ𝑘 = 0 ∣ 𝑥𝑘; 𝜸)] ]
(4.5)

41



In traditional regression, altering the ratio of positive to negative examples by reweight-

ing leads to inconsistent parameter estimation. The inconsistency stems from the ran-

domness in the labels, given the features. However, Recall@𝐾 assumes that each user,

item attribute set pair (𝑢, 𝑥𝑚) uniquely determines whether the item was consumed or

not (the label 𝑦ᵆ𝑚). Here, all reweightings produce the same result. This means that for

any negative example weight 𝜆ᵆ, the learned model will be the same. In practice we set

𝜆ᵆ to balance the positive and negative examples for each user. We use stochastic opti-

mization to maximize Equation (4.5), and describe two negative sampling schemes that

are dependent on the choice of evaluation metric.

Negative samples can be drawn uniformly over the entire corpus of items, which we de-

fine to be corpus sampling. If the item set is large, this can be an expensive procedure.

This negative sampling scheme leads to objective functions used in other recommender

systems (He et al., 2017; Song et al., 2018).

On large datasets, it is infeasible to calculate Recall@𝐾 for evaluation, as this requires

ranking every item for every user (e.g. in Section 4.4 we study a dataset with over 10M

items). We define a scalable evaluation metric based on recall, and describe how it leads

to a natural choice of negative sampling distribution.

Sampled recall is defined as follows. Consider held-out datapoints with positive la-

bels, (𝑥𝑚, 𝑦ᵆ𝑚 = 1). For every held-out datapoint, 𝐾 − 1 datapoints with negative la-

bels (𝑥𝑘, 𝑦ᵆ𝑘 = 0) are sampled from the rest of the held-out data, which together yield a

set of𝐾 datapoints. A recommendationmodel is used to rank the𝐾 datapoints 𝑟 1, … , 𝑟 𝐾 .

SampledRecall@𝑘 is the fraction of the 𝐾 held-out datapoints that the model ranks in

the top 𝑘:

SampledRecall@𝑘 = 1
𝐾𝔼ᵆ𝑚 [ ∑

𝑟∈{𝐫𝑢1,…𝐫𝑢𝑘}
𝑦ᵆ𝑟] . (4.6)

The expectation is over users and items in theheld-out set of datapoints. This evaluation

metric is scalable: insteadof using amodel to rank every item, SampledRecall@𝑘 requires

ranking only𝐾 items. Sampled recall is 1 if 𝑘 = 𝐾, as the held-out datapoint with 𝑦ᵆ𝑚 = 1
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is in each list of 𝐾 datapoints to be ranked. This metric is used in recommender systems

when the number of items is large (Ebesu et al., 2018; Yang et al., 2018).

When sampled recall is used as an evaluation metric, batch sampling is a natural way to

draw negative samples. Sampled recall is calculated on items drawn from other user’s

data. Wedefine batch sampling as generating negative samples by permutingmini-batch

items. Besides corresponding to the sampled recall metric, this technique is memory-

efficient, as it requires that only the current mini-batch be in memory.

In addition to scalability, both negative sampling procedures above have the advantage

of implicitly balancing the classifier. As shown in Veitch et al. (2019), using stochastic

gradient descent with negative sampling is equivalent to a Monte Carlo approximation

of the reweighted (balanced) classification loss.

4.3 Permutation-invariant RecommenderModels

Proposition 2 shows that rfs can approximate permutation-invariant recommendation

models. We describe several common recommendation models and show that they are

permutation-invariant, before comparing their performance torfs in Section 4.4.

Gopalanet al. (2014) developaprobabilisticmatrix factorizationmodel of user consump-

tion data. Collaborative topic Poisson factorization (ctpf) models user preferences us-

ing a generative process,

1. Documentmodel:

(a) Draw topics 𝛽𝑣𝑘 ∼ Gam(𝑎, 𝑏)

(b) Draw document topic intensities 𝜃𝑑𝑘 ∼ Gam(𝑐, 𝑑)

(c) Draw word count 𝑤𝑑𝑣 ∼ Poisson(𝜃𝑇𝑑 𝛽𝑣).

2. Recommendationmodel:

(a) Draw user preferences 𝜂ᵆ𝑘 ∼ Gam(𝑒, 𝑓)
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(b) Draw document topic offsets 𝜖𝑑𝑘 ∼ Gam(𝑔, ℎ)

(c) Draw 𝑟 𝑑 ∼ Poisson(𝜂𝑇ᵆ (𝜃𝑑 + 𝜖𝑑)).

To show that ctpf is permutation-invariant, consider the Poisson likelihood function

over words 𝑤𝑑𝑣. Conditional on the latent item representation 𝜃𝑑 and latent word rep-

resentation 𝛽𝑣, every word in the document 𝑤𝑑𝑣 is independent; the joint probability of

words in a document factorizes:

𝑝(𝑤𝑑 ∣ 𝜃𝑑, 𝛽𝑣) = ∏
𝑤𝑑𝑣∈𝑤𝑑

𝑝(𝑤𝑑𝑣 ∣ 𝜃𝑑, 𝛽𝑣) . (4.7)

ctpfmakes predictions using expectations under the posterior. Theposterior is propor-

tional to the the log joint of themodel, and the attributes of items (words in documents)

enter into themodel only via the above product. The product of the probability ofwords

in a document is invariant to a reordering of the words in the document, and therefore

ctpf is permutation-invariant.

Word embedding models (Mikolov et al., 2013) can be used as recommendation models

if the embeddings are learned using a modified context window. For an item with at-

tributes 𝑥𝑚, let the context window for attribute 𝑗 ∈ 𝑥𝑚 be the set of other attributes

of the same item 𝑗′ ∈ 𝑥𝑚 ∶ 𝑗′ ≠ 𝑗. To recommend items using this model of attributes 𝛽𝑗
for 𝑗 ∈ 𝑉 , item embeddings are computed as the average of their attribute embeddings.

Users are represented as the average of the embeddings of the items they consume, and

recommendation is performed using the cosine similarity of user and item embeddings.

This is a permutation-invariant model, as the output of the model depends on the sum

of attribute embeddings (summation is invariant to permutation).

StarSpace is also an embedding model and represents users as a sum over a user’s con-

sumed items’ attribute embeddings (there is no explicit user embedding). In contrast to

the word embedding model, StarSpace is trained on a classification objective with neg-

ative samples drawn from the the set of items (Wu et al., 2018). As model predictions
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depend on sums of attributes, StarSpace is a permutation-invariant recommendation

model.

We next consider LightFM (Kula, 2015), a permutation-invariant recommendation

model. We show that if the Bayesian Personalized Ranking (bpr) objective (Rendle

et al., 2009) is used, LightFM is an instance of rfs. 1 Although the bpr objective is

designed for ranking, models trained with it can be used to construct classifiers. The

bpr objective is

log𝜎 (𝑓(𝑢, 𝑥𝑚; 𝜸) − 𝑓(𝑢, 𝑥𝑘; 𝜸)) ,

where𝑚 corresponds to a positive label 𝑦ᵆ𝑚 = 1, 𝑘 corresponds to a negative label 𝑦ᵆ𝑘 = 0,

and𝑓 is parameterized as inrfs (Kula, 2015). A ranking function 𝑓 optimizes thebpr ob-

jective if 𝑓 → ∞ for the positive example and 𝑓 is constant for the negative example; or,

if 𝑓 is constant for the positive example and 𝑓 → −∞ for the negative example. In either

case, a constant canbeadded toyield aperfect classifier fromthe ranking function𝑓 (pos-

itive examples are ranked higher than negative examples in the optimal ranking, so there

exists such a constant). That we can construct a classifier from the bpr objective means

that Proposition 1 applies: permutation-invariantmodels such as LightFM, trainedwith

the bpr objective, are instances of the rfs class of recommendation models.

The regression function 𝑓 in rfs can also be parameterized using a recurrent network,

as in Bansal et al. (2016). Such a recommendation model can be made permutation-

invariant if averaged over permutations of attributes fed to the network. Attributes are

treated as a sequence and the marginalization is over these permutations,

𝑝(𝑦ᵆ𝑚 = 1 ∣ 𝑥𝑚) =
1

|𝜋(𝑥𝑚)|
∑

𝜋∈𝜋(𝑥𝑚)
𝜎 (𝜙(𝜃ᵆ, {𝛽𝜋(1), … , 𝛽𝜋(𝐽)})) . (4.8)

1The LightFMpaper (Kula, 2015) uses a logistic objective to which Proposition 1 applies. LightFMwith
the bpr objective is unpublished but implemented in code released by the author. For completeness, we
studiedLightFMwithbothobjectives to ensure its performance is equivalent torfswhen thebprobjective
is used.
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Here 𝛽𝑗 are attribute embeddings, 𝜋(𝑥𝑚) denotes the set of all permutations of the at-

tributes 𝑥𝑚, and 𝜙 is the output of a recurrent neural network architecture (Bansal et al.,

2016) projected to a scalar.

4.4 Empirical Study

We study rfs on two datasets and tasks. The first data consists of researcher reading

behavior from the arXiv; the semi-synthetic task is to recommend documents to sci-

entists. The second is crowdsourced food consumption data from a diet tracking app,

and the task is meal recommendation. On both benchmarks, models in the rfs class

outperform several baseline methods. The permutation-invariant models we compare

to are described in Section 4.3, and the hyperparameters used are described in Sec-

tion 4.7.1. To show the relative ease of implementation of rfs we give example code in

Section 4.7.5.2

Recommending Research Papers. We benchmark rfs on data of scientists reading

research papers on the arXiv, where the goal is to recommend papers to scientists. This

is a semi-synthetic task: it uses real-world data, but the item side information (article ab-

stracts) is not set-valued. Nevertheless, document recommendation is a standard bench-

mark to study whether rfs performs well in settings outside its target purview of meal

recommendation. The arXiv data represents one year of usage (2012) and consists of

65k users, 636k preprints, and 7.6M clicks. For evaluation, we match (Gopalan et al.,

2014), using the same test and validation splits and the same set of held-out 10k users. As

in (Gopalan et al., 2014) we compute precision in addition to recall. The held-out valida-

tion and test splits each consist of 20% of the clicks and 1% of the documents. In-matrix

documents refer to documents that have clicks in the training data, while out-matrix or

cold-start documents have no previous clicks.

2Full source code is available at https://github.com/altosaar/rankfromsets for reproducibility.
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(b) Precision for in-matrix (left) and out-matrix (right) documents.

Figure 4.2: rankfromsets outperforms collaborative topic Poisson factoriza-
tion (ctpf) (Gopalanetal., 2014)andothermodelsonrecommendingarXivpapers
to scientists. The items are documents and the attributes are the unique words in the
abstracts. Recommendation performance is evaluated using both precision and recall to
match the evaluation in (Gopalan et al., 2014). The metrics are reported on training (in-
matrix) documents and cold-start (out-matrix) documents with no clicks in the training
set. All gru and lstm-based models in Bansal et al. (2016) performed an order of mag-
nitude worse, and these results are omitted (training details are in Section 4.7.1).

Figure4.2 shows thatmodels in therfsclassoutperformothers. rfswith the innerprod-
uct parameterization or LightFMwith the bpr objective have identical performance (as

we showed, the bpr objective yields a classifier equivalent to rfs). These rfs models

outperform ctpf in terms of in-matrix recall by over 90%. rfsmodels also improve over

ctpf in terms of out-matrix recall, out-matrix precision, and in-matrix precision (for the

latter, only when the number of recommendations is greater than 30). The word embed-

dingmodel performs comparably toctpf in terms of recall, and performsworse in terms

of precision. Recurrent neural network recommendationmodels were implemented fol-

lowingBansal et al. (2016) and given access to full sequence information, unlikerfs. (The

permutation-marginalized version of thesemodels in Equation (4.8) is evaluated onmeal

recommendation where the order of foods in a meal does not carry information.) The

training details for the recurrent neural networks are in Section 4.7.1, but their perfor-
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mance was an order of magnitude worse than the other methods and these results are

omitted. The rfs regression function used is in Equation (4.2); the other parameteriza-

tions did not fit in GPUmemory.

Qualitatively, rfs reveals patterns in usage of the arXiv. Figure 4.1 is a dimensionality-

reduced plot of the user embeddings that reveals connections between fields of study.

Scientists who focus on high energy physics, hep, neighbor specialists in differential ge-

ometry, math.DG; these areas share techniques. Machine learning researchers (stat.ML

readers) neighbor statisticians (math.ST readers), highlighting the close connection be-

tween these fields. Plots for document embeddings show similar patterns. This illus-

trates how rfs captures rich patterns of interaction between users and items, while ben-

efitting from information in the item attributes.

This experiment in recommending research papers also highlights a trade-off in compu-

tational budget and desired performance in recommender systems. As described in Sec-

tion 4.7.2, the recurrent neural network recommendation models in Bansal et al. (2016)

did not perform well with the computational budget allocated for all methods (one day

of compute on Tesla P100 GPUs). In further experiments, the performance improved

marginally with a larger computational budget of several days. Further research in this

domain might compare to transformer models (Vaswani et al., 2017; Devlin et al., 2019).

Transformers preserve sequence information, unlike rfs, although they require large

computational budgets to make accurate predictions. This means transformer-based

methodsmay present a different trade-off in recommendation performance than the re-

current neural networks we evaluated in this task.

Recommending Meals. We evaluate rfs on data collected from the LoseIt! diet

tracking app. This app enables users to track their food intake to eat healthy. We use a

year’s worth of data from 55k active users. This corresponds to 16Mmeals, where each

meal is comprised of a subset of 3M foods. To preprocess, we filter the vocabulary by

keeping words that occur at least 20 times in the food names, resulting in 9963 words. A
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Figure 4.3: rankfromsetsmodels outperform competitors in meal recommen-
dation in terms of sampled recall computed using Equation (4.6). Comparison
models are described in Section 4.3 (see Section 4.7.1 for hyperparameters). The
rfs regression functions𝑓 aredefined inEquations (4.2) to (4.4) for the innerprod-
uct, neural network, and residual models, respectively.

meal is represented as the union of the sets of words occurring in the food names. For

evaluation, 1% of the items (meals) are held out for evaluating validation and test perfor-

mance respectively. We evaluate models using SampledRecall@𝐾 with 𝐾 = 10.

Figure 4.3 shows the sampled recall: models in the rfs class outperform others, such as

permutation-marginalized recurrent neural networks andword embeddingmodels. The

residual rfsmodel outperforms the rfs inner product parameterization (and the equiv-

alent LightFM model trained on the bpr objective). The code released with Gopalan

et al. (2014) or Wang and Blei (2011) did not scale to this size of data, despite sufficient

computing resources. This experiment further verifies Proposition 1: rfs models can

maximize recall.

Qualitatively, rfs learns an interpretable representation of items, as shown by nearest

neighbors of meals in Table 4.2. In this table, we display breakfast, lunch, and dinner

meals, alongside their nearest neighbors. We find that the nearest neighbors are also

breakfast, lunch, and dinner meals respectively, showing that the attribute embeddings

learned by the model can be used to explore qualitative patterns in the learned latent

space.
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Model Attributes Implicit Scalable Invariant Evaluation
rankfromsets     
ctpf, Gopalan et al. (2014)   
StarSpace,Wu et al. (2018)    
LightFM, Kula (2015)    
bpr, Rendle et al. (2009)  
Wang and Blei (2011)   
Lian et al. (2018) 
Dong et al. (2017)  
Chen et al. (2017)  
Bansal et al. (2016)  
Xu et al. (2017)   
Shi et al. (2012b)  
Chen and Rijke (2018)   
Liu et al. (2014)   
Cao et al. (2017)  
Okura et al. (2017)   

Table 4.3: rankfromsets recommends items using attributes, and is trained to
maximize the evaluation metric of recall. Most methods we highlight leverage item
attributes (Attributes); some require data in addition to the implicit feedback data of
user-item interactions (Implicit). Fewmethods are scalable, asmostmodels thatuse item
side information require learning parameters for every item. Somemodels are invariant
to permutation of the attributes (Invariant), and some enjoy a loss function that is con-
nected to a recommender performance metric (Evaluation).

4.5 RelatedWork

We survey food recommender systems and recommendation models, focusing on mod-

els that leverage content information and scale to large numbers of users, items, and at-

tributes.

Existing food recommendation systems focus onhealthy recommendation (Trattner and

Elsweiler, 2019a; Freyne et al., 2011; Khan et al., 2019; Yang et al., 2017), whilerfs focuses
on the scalability challenge of meal recommendation. After training a recommendation

model, it is possible to filter the recommendations by nutritional information to nudge

users towards healthier eating habits (Elsweiler et al., 2017); such approaches can be used

to include nutritional information into rfs recommendations. When data is used in

food recommender systems, it is usually recipe data (Trattner and Elsweiler, 2018); rfs
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is designed to recommendmeals using crowdsourced food consumption data whichmay

accurately reflect user behavior (Trattner and Elsweiler, 2019b).

We highlight several themes in research on recommendation models. We describe

recommendation models that incorporate side information, models that recommend

through classification, and models that optimize proxies of ranking metrics. This re-

lated work is summarized in Table 4.3. We focus on deep learning-based and matrix

factorization methods to include side information in recommendation models. Item

side information can be modeled with deep representations or can be included in

content-based matrix factorization models as an additional matrix. Some deep learning

approaches scale to large datasets, but may not have objective functions tied to evalu-

ation metrics, or may require data beyond user-item interactions (Okura et al., 2017).

Content-basedmatrix factorizationmethods require learningparameters for every item,

and do not scale to datawith large numbers of items (Wang andBlei, 2011; Gopalan et al.,

2014), whereas rfs scales and is tied to evaluation.

DeepRepresentationsof Side Information. Deep learning-based recommendation

models incorporate side information in multiple ways (Zhang et al., 2019). For example,

items that have words as attributes can be represented using neural networks (Bansal et

al., 2016; Chen and Rijke, 2018) or embeddings (Wu et al., 2018). rfs uses both embed-

dings and deep learning techniques such as residual networks (He et al., 2016) to include

side information. Lian et al. (2018) use an attention mechanism to weight recommen-

dations according to available item and user side information, andDong et al. (2017) use

denoisingautoencoders tomodel side information inadeep recommendationmodel, but

these methods require fitting parameters for every item and hence cannot scale. An ex-

ample of amore efficient approach is themethod inChenet al. (2017), where embeddings

are jointly learned for users, items, and item text for recommendation, but this method

focuses on unsupervised pre-training of text representations. rfs is complementary to

such approaches, as the user, attribute, and itemembeddings can be initialized using pre-

training. Deep structured semantic models are designed for document retrieval given
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query words (Huang et al., 2013; Palangi et al., 2016); it is unclear how to use this setup

for recommending items with set-valued side information to users. There are several ex-

amples of ‘tag-aware’ or ‘tag-based’ deep recommendation models (Liang et al., 2018b;

Zuo et al., 2016), such as Xu et al. (2017), which focuses on data where users and items

have different attributes and uses autoencoders to learn user, item, and attribute repre-

sentations. Xu et al. (2017) uses a cosine similarity-based objective function which is not

tied to a metric used to evaluate recommendation performance, whereas rfs is tied to

recall as shown in Proposition 1.

Recommendation via Classification. The framing of recommendation as classifica-

tion has been around for a long time (Basu et al., 1998), and several works build deep

learning-based classifiers for recommendation (Covingtonet al., 2016; Cheng et al., 2016;

Guo et al., 2017; He et al., 2017). Covington et al. (2016) focus on scalable inclusion of

user and item attributes for video recommendation, Cheng et al. (2016) jointly train gen-

eralized linear models and deep neural networks for recommendation, while Guo et al.

(2017) use factorization machines to learn high- and low-order interactions of features.

Our work is complementary to these approaches: rfs focuses on scalable inclusion of

set-valued side information, and provides theoretical undergirding to these recommen-

dation models. We connect such models that rely on classification to optimal recall in

Proposition 1. And if a specific architecture developed in these works is a permutation-

invariant recommendationmodel, we proved thatrfs is a universal function approxima-

tor (Proposition 2). So if performance is measured by recall, an rfsmodel can converge

to an optimal recommender.

Matrix Factorization with Side Information. While matrix factorization methods

performwell in recommending items that have consumption data in the training set (Hu

et al., 2008; Liang et al., 2016), they cannot recommend items that have not been con-

sumed in the training data. Including side information in matrix factorization enables

recommendation of these items with no consumption data. Shi et al. (2014) survey sev-
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eral matrix factorization methods that leverage side information. Gopalan et al. (2014)

develop a Bayesian matrix factorization model for recommending items based on side

information in the form of words in documents, and we compare rfs to this method in

Section 4.4. Wang and Blei (2011) develop a regression model that uses a topic model to

incorporate side information into recommendations. There are also several ‘tag-based’

or ‘tag-aware’ content-based matrix factorization models (Zhen et al., 2009; Loepp et

al., 2019; Bogers, 2018). Such content-based matrix factorization methods maximize

the conditional log-likelihood of the data (or a bound on the log-likelihood); optimizing

these objective functionsmaynot optimize an evaluationmetric. Thesemethods are not

scalable to large numbers of items as they require learning unique parameters for every

item. Specifically, such content-based matrix factorization methods require learning a

matrix that has a row for every item. For items with attributes, it is often infeasible to

store thismatrix inmemory or exploit efficient coordinate ascent optimization schemes

that require processing this entire matrix. rfs, however, is designed to scale to tens of

millions of items, as we demonstrate empirically in Section 4.4.

Learning to Rank. The learning to rank literature includes several recommendation

models trained on objectives that approximate ranking-based evaluation metrics (Yu et

al., 2018; Liang et al., 2018a; Rendle et al., 2009; Song et al., 2018), and some of these

models include side information (Shi et al., 2012a; Shi et al., 2012b; Yuan et al., 2016; Ying

et al., 2016; Cao et al., 2017; Okura et al., 2017). Such approaches can require data in ad-

dition to the user-itemmatrix, such as per-item parameters, or might use models whose

output depends on the ordering of itemattributes (making them infeasible for set-valued

side information). In Section 4.4, we show that the ranking-based bpr objective func-

tion (Rendle et al., 2009; Kula, 2015) is in the rfs class, so Proposition 1 can help frame

this relatedwork. Li et al. (2016)use anobjective that is in the sameclass asbpr, andother
workbounds thebprobjective (Zhanget al., 2018); these are alsoexamplesof rfsmodels

if a permutation-invariant architecture is specified and we study one such choice (Kula,

2015) in Section 4.4.
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4.6 Discussion

The task of recommending items with attributes is difficult for several reasons. It is un-

clear how to incorporate set-valued side information intomodels that scale to large num-

bers of items and attributes. In addition, existing recommendationmodels that leverage

item attributes (for example, content-based matrix factorization) are not directly tied

to evaluation metrics. We developed rfs, a class of scalable recommendation models

for items with attributes. Theoretically, we showed that optimizing the rfs objective

optimizes recall, and that rfs can approximate permutation-invariant recommendation

models including content-based matrix factorization. Empirically, models in the rfs
class outperform competing models and scale to large datasets, such as our motivating

problem of meal recommendation for 55k users who consume 16Mmeals.

How well does binary classification perform for other ranking-based recommendation

metrics, such as non-discounted cumulative gain? Analyzing this question is more dif-

ficult, and we leave this to future work. For generalization theory, we conjecture that a

different loss function should allow a similar proof toProposition 1. With sufficient data,

rfs can learn arbitrary distributions of users consuming items with attributes. But per-

formance on finite data can vary, and developing generalization theory for rfs remains

an open question.

4.7 Appendix

4.7.1 Empirical StudyHyperparameters

Experiments forrfs, LightFM, and recurrent neural networkmodels are runon a cluster

with Tesla P100GPUs using PyTorch; all other experiments are performed on a 20-core

computer.

Hyperparameters forWord Embedding Model and StarSpace. For the word em-

bedding model and StarSpace, we use the software packages released alongside the re-
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spectivepapers (Bojanowski et al., 2017;Wuet al., 2018)with recommendedhyperparam-

eters, and grid searchover embedding sizes of {128, 256, 512, 1024} for bothdatasets.

Hyperparameters for LightFM. Onboth datasets, LightFMwith the logistic objec-

tive reported in Kula (2015) performs poorly and we omit these results. Kula (2015) does

not use the bpr objective in the paper; nevertheless, we study LightFMwith the bpr ob-

jective (this variant is unpublished, yet implemented in the code released in (Kula, 2015))

and use the same hyperparameters as rfs for comparison.

4.7.2 Recommending Research Papers

Hyperparameters for rfs. We test the stochastic gradient descent algorithm with

and without momentum (Sutskever et al., 2013). We use a linear learning rate decay that

decays to zero in themaximumnumberof iterations, 200k. Weperformagrid searchover

learning rates of {1, 5, 10, 15, 25} andmomenta of {0.5, 0.9, 0.95, 0.99}. Theminibatch size is

set to 216. We use a single negative sample per datapoint, sampled uniformly over the

entire dataset; such corpus sampling is defined in Section 4.2. As the number of items is

small relative to the largerdiet trackingdata, the item intercept function is simply a scalar

for every item, and the item embedding function learns item embeddings. Tomatch the

hyperparameters inGopalan et al. (2014), we set the dimensionality of user and item em-

beddings to 100. Evaluation is performed every 20k iterations.

Hyperparameters for Recurrent Neural Network Models. We implement the

model in Bansal et al. (2016) using PyTorch and match the hyperparameters where pos-

sible. We test gated recurrent unit (gru) cells and long short-termmemory (lstm) cells

with the objective function in Equation (4.5). The model has access to full sequence

information, unlike rfs, as abstracts of research papers have meaningful sequence

information (marginalizing using Equation (4.8) would destroy information and de-

crease performance). The attribute embedding size is fixed to 100 to match the other

models and attribute embeddings are initialized to word embeddings pretrained on all
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636k document abstracts as in Bansal et al. (2016), using the word embedding imple-

mentation in Bojanowski et al. (2017). The first layer of the recurrent neural network

is bidirectional and of hidden size 400, the second layer is unidirectional and of hid-

den size 200, and dropout is used with the same settings as in Bansal et al. (2016).

Evaluation is performed every 20k iterations. We grid search over learning rates of

{10−1, 10−2, 10−3, 10−4} with the Adam optimizer (Kingma and Ba, 2015) and batch sizes

of {64, 128, 256, 512, 1024, 4096, 8192}. As evaluation is much more expensive for sequence

models, we randomly select a subset of 100 users from the held-out set of 10k users.

If validation performance does not improve, we reload the best parameters and op-

timizer states, and divide the learning rate by half. In both experiments, lstm cells

outperformed gru cells.

4.7.3 RecommendingMeals

Hyperparameters for rfs. The embedding size is set to 128. For the neural network

and residual models in Equations (4.3) and (4.4) the number of hidden layers is two, and

the number of hidden units is set to 256 with rectifier nonlinearities. The item embed-

dings 𝑔(𝑥𝑚), and item interceptsℎ(𝑥𝑚), are computed as themeanof learned foodembed-

dings and intercepts, respectively. We use the RMSProp optimizer in Graves (2013) and

grid search over the learning rates {10−2, 10−3, 10−4, 10−5}. We use a batch size of 64 and

a single negative sample for every datapoint in a minibatch (batch sampling is defined in

Section 4.2). Evaluation is performed every 50k iterations.

Hyperparameters for Permutation-marginalized Recurrent Neural Networks.

We use the same settings as described in Section 4.7.2, but the data in this case has no

sequence information so we use Equation (4.8) to average predictions of the model in

Bansal et al. (2016) over permutations. Evaluation for sequence models is already pro-

hibitive, so for every item in a minibatch we sample a single permutation of attributes

to approximate the sum over permutations in Equation (4.8). We use a single negative

sample per datapoint (minibatch sampling), and set the embedding and hidden state
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sizes to 128. We use the Adam optimizer (Kingma and Ba, 2015) and grid search over

the same learning rates, learning rate decay, and batch sizes as in Section 4.7.2, with

evaluation every 1k iterations.

4.7.4 Generalization Simulation Study

Proposition 2 is a universal function approximation theorem in the regime of infinite

data. Withfinitedata andafinitenumberofparameters, theoptimalparameterizationof

rfs is dependent on thedata-generatingdistribution. FromFigure 4.3, the inner product

rfs parameterization outperforms the neural network parameterization. We demon-

strate a simulated dataset where this order is reversed, to motivate the exploration of

novel architectures. Recall that observations of user-item interactions are generated by

a Bernoulli distribution with logit function 𝑓. We describe a choice of logit function 𝑓

that leads to the residual and deep architectures in Equations (4.3) and (4.4) outperform-

ing the inner product architecture in Equation (4.2) in terms of predictive performance.

We will release all code required to replicate this experiment.

1. For every user 𝑢: Draw user embedding 𝜃ᵆ ∼Normal(0, 𝐈).

2. For every attribute 𝑗: Draw attribute embedding 𝛽𝑗 ∼Normal(0, 𝐈).

3. For every item𝑚:

(a) Draw item topics 𝜃𝑚 ∼ Dirichlet(𝛼)

(b) Draw number of item attributes𝑀 ∼ Poisson(𝜆)

(c) Draw nonzero item attributes 𝑥𝑚 ∼Multinomial(𝑀, 𝜃𝑚).

4. For every user, item: 𝑦ᵆ𝑚 ∼ Bernoulli (𝑦ᵆ𝑚; 𝜎(𝑓(𝜃ᵆ, 𝑥𝑚)).

The logit function 𝑓 is the square kernel:

𝑓(𝜃ᵆ, 𝑥𝑚) = (𝜃⊤ᵆ
1

|𝑥𝑚|
∑
𝑗∈𝑥𝑚

𝛽𝑗)
2

.
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Inner product Deep Residual
Recall 0.29 ± 0.15 0.32 ± 0.14 0.33 ± 0.18

Table 4.4: A simulation study demonstrating that the choice of parameterization
of rankfromsets is data-dependent. We report the in-matrix recall averaged over
100 users, over 30 replications of the simulation. The residual model in Equation (4.4)
outperforms the deep model in Equation (4.3) and the inner product model in Equa-
tion (4.2).

The output of 𝑓 is standardized across users and centered at 7 to achieve sparse user-item

observations.

For this simulation study, we set the Dirichlet parameter to be 𝛼 = 0.01 and the Poisson

rate to be 𝜆 = 20. We generate data for 1k users, 5k item attributes, 30k items, and hold

out 100users for eachof the validation and test sets. Theembedding sizes arefixed to 100,

and for parameterizations with neural networks two hidden layers are usedwith rectifier

nonlinearities. The hidden size of models with neural networks is chosen so the total

number of parameters matches the number of parameters in the inner product model.

We fix the momentum to 0.9 (Sutskever et al., 2013) and grid search over stochastic gra-

dient descent learning rates of 10, 1, 0.1, 0.01 and over two learning rate decay schedules.

The first linear learning rate decay goes to zero over 100k iterations, while the second

divides the learning rate by 10 if the validation in-matrix recall does not improve (evalu-

ation is performed every 500 iterations). We run the grid search on one instance of data

generated from this model. We regenerate data 30 times and average results over these

synthetic datasets, using the best performing hyperparameters for each model trained

on the first instance.

The results in Table 4.4 demonstrate that the residualmodel outperforms both the deep

and inner product architectures for data generated by the above generative process. This

shows that the choice of architecture in rfs is data-dependent and leads to considering

when a rfs recommendation model supports generalization. To ensure that the model

does not overfit as new users or items are included in the training data, we need to com-
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pare the number of parameters to the number of datapoints. A model with parameters

the size of the training data can overfit by memorizing the training data. For generaliza-

tion to be possible, overfitting can be avoided if the number of parameters grows slower

than the size of the data. The technical backing for this comes fromasymptotic statistics

and the concept of sieved likelihoods. Specifically, the maximum likelihood estimation

procedurewith the objective function inEquation (4.5) can be replaced bymaximization

of a sieved likelihood function. The ‘sieve’ refers to filtering information as the number

of parameters (in this case, the number of parameters in user and item representations)

growswith the number of observations. The sieved likelihood function enables the anal-

ysis of asymptotic behavior as thenumberof users grows𝑈 → ∞ and thenumberof items

grows 𝐼 → ∞. An example of a technique to grow the number of parameters in a way that

supports generalization is given in Chapter 25 of Vaart (1998).
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4.7.5 Code

We give an example implementation of rankfromsetswith the inner product regres-

sion function in Equation (4.2) in python with the PyTorch package. This implemen-

tation is easy to port to new applications and achieves state-of-the-art results in Sec-

tion 4.4.

import torch

import data

class InnerProduct(torch.nn.Module):

def __init__(self, n_users, n_items, n_attr, emb_size):

super().__init__()

self.user_embeddings = torch.nn.Embedding(n_users, emb_size)

self.attribute_emb = torch.nn.EmbeddingBag(n_attr, emb_size)

self.item_embeddings = torch.nn.Embedding(n_items, emb_size)

self.intercepts = torch.nn.Embedding(n_items, 1)

def forward(self, users, items, item_attributes, offsets):

user_emb = self.user_embeddings(users)

attr_emb = self.attribute_emb(item_attributes, offsets)

item_emb = self.item_embeddings(items)

logits = (user_emb * (attr_emb + item_emb)).sum(-1)

return logits + self.intercepts(items).squeeze()

train = data.load(batch_size=2 ** 16) # negative labels in last half of every batch

model = InnerProduct(train.n_users, train.n_items, train.n_attr, 100)

optim = torch.optim.SGD(model.parameters(), learning_rate=15.0)

loss = torch.nn.BCEWithLogitsLoss()

labels = (torch.arange(2 ** 16) < (2 ** 16 / 2)).float()

for batch in train:

model.zero_grad()

logits = model(*batch)

L = loss(logits, labels)

L.backward()

optim.step()
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Chapter 5

Proximity Variational Inference

reviously, Chapters 3 and 4 highlighted how consideration of the problem

structure enabled efficient probabilistic modeling solutions to applied ques-

tions in physics and recommender systems. Can problem structure be of use

at a higher level, in an inference algorithm that can be re-used across probabilitymodels?

We develop proximity variational inference in this chapter, which enables variational in-

ference to leverage information about variational approximations during optimization

to improve the accuracy of inference.

5.1 Introduction

Variational inference (vi) is a powerful method for probabilistic modeling. vi uses

optimization to approximate difficult-to-compute conditional distributions (Jordan

et al., 1999). In its modern incarnation, it has scaled Bayesian computation to large data

sets (Hoffman et al., 2013), generalized to large classes of models (Kingma and Welling,

2014; Ranganath et al., 2014; Rezende andMohamed, 2015), and has been deployed as a

computational engine in probabilistic programming systems (Mansinghka et al., 2014;

Kucukelbir et al., 2015; Tran et al., 2016).
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Despite these significant advances, however, vi has drawbacks. For one, it tries to itera-

tively solve a difficult nonconvex optimization problem and its objective contains many

local optima. Consequently, vi is sensitive to initialization and easily gets stuck in a poor

solution. Wedevelop a newoptimizationmethod forvi and show that it finds better op-

tima.

Consider a probability model 𝑝(𝐳, 𝐱) and the goal of calculating the posterior 𝑝(𝐳 ∣ 𝐱).

The idea behind vi is to posit a family of distributions over the hidden variables 𝑞(𝐳; 𝝀)

and then fit the variational parameters 𝝀 to minimize the Kullback-Leibler (kl) diver-
gence between the approximating family and the exact posterior, kl(𝑞(𝐳; 𝝀)||𝑝(𝐳 ∣ 𝐱)).

The kl is not tractable so vi optimizes a proxy. That proxy is the evidence lower bound

(elbo),

ℒ(𝝀) = 𝔼[log𝑝(𝐳, 𝐱)] − 𝔼[log 𝑞(𝐳; 𝝀)], (5.1)

where expectations are taken with respect to 𝑞(𝐳; 𝝀). Maximizing the elbowith respect

to 𝝀 is equivalent to minimizing the kl divergence. The issues around vi stem from the

elbo and the iterative algorithms used to optimize it. When the algorithm zeroes (or

nearly zeroes) some of the support of 𝑞(𝐳; 𝝀), it becomes hard to later “escape,” i.e., to

add support for the configurations of the latent variables that have been assigned zero

probability (MacKay, 2003; Burda et al., 2015). This leads to poor local optima and to

sensitivity to the starting point, where a misguided initialization will lead to such op-

tima. These problems happen in both gradient-based and coordinate ascent methods.

We address these issues with proximity variational inference (pvi), a variational infer-

ence algorithm that is specifically designed to avoid poor local optima and to be robust

to different initializations.

pvi builds on the proximity perspective of gradient ascent. The proximity perspective

views each step of gradient ascent as a constrainedminimization of aTaylor expansion of

the objective around theprevious step’s parameter (Spall, 2003; Boyd andVandenberghe,

62



0 100
First cluster mean �1

0

100

Se
co
nd
cl
us
te
rm
ea
n
�
2

Inferred parameters
True parameters

(a)Variational Inference

0 100
First cluster mean �1

0

100

Se
co
nd
cl
us
te
rm
ea
n
�
2

Inferred parameters
True parameters

(b) Proximity vi, Algorithm 2

Figure 5.1: Proximity variational inference is robust to bad initialization. We study
aBernoulli factormodel. Model parameters are randomly initializedon a ring around the
known true parameters (in red) used to generate the data. The arrows start at these pa-
rameter initializations and end at thefinal parameter estimates (shown as greendots). (a)
Variational inferencewith gradient ascent suffers frommultiple local optima and cannot
reliably recover the truth. (b) pvi with an entropy proximity statistic reliably infers the
true parameters using Algorithm 2.

2004). Theconstraint, a proximity constraint, enforces that thenextpoint shouldbe inside
aEuclideanball of theprevious. The step size relates to the sizeof thatball. Weconstruct

pvi by questioning whether such a Euclidan distance-based constraint is appropriate,

and whether other notions of proximity may be useful in constraining gradient ascent

steps.

Invi, a constraint on theEuclidean distancemeans that all dimensions of the variational

parameters are equally constrained. We posit that this leads to problems; some dimen-

sions need more regularization than others. For example, consider a variational distri-

bution that is Gaussian. A good optimization will change the variance parameter more

slowly than themean parameter to prevent rapid changes to the support. The Euclidean

constraint cannot enforce this. Furthermore, the constraints enforced by gradient de-

scent are transient; the constraints are relative to the previous iterate—one poor move

during the optimization can lead to permanent optimization problems.
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To this end, pvi uses proximity constraints that aremoremeaningful to variational infer-

ence and to optimization of probability parameters. A constraint is defined using a prox-

imity statistic and distance function. As one example, we consider a constraint based on

the entropy proximity statistic. This limits the change in entropy of the variational ap-

proximation from one step to the next. Consider again a Gaussian approximation. The

entropy is a function of the variance alone and thus the entropy constraint counters the

pathologies induced by the Euclidean proximity constraint. We also study constraints

built fromother proximity statistics, such as those that penalize the rapid changes in the

mean and variance of the approximate posterior.

Figure 5.1 provides an illustrationof the advantages of pvi. Our goal is to estimate thepa-

rameters of a factor analysismodel with variational inference, i.e., using the posterior ex-

pectation under a fitted variational distribution. We run variational inference 100 times,

each time initializing the estimates (the model parameters) to a different position on a

ring around the truth.

In the figure, red points indicate the true value. The start locations of the green arrows

indicate the initialized estimates. Green points indicate the final estimates, after opti-

mizing from the initial points. Panel (a) shows that optimizing the standard elbo with

gradients leads to poor local optima and misplaced estimates. Panel (b) illustrates that

regardless of the initialization, pvi with an entropy proximity statistic finds estimates

that are close to the true value.

The rest of this chapter is organized as follows. Section 5.2 reviews variational inference

and the proximity perspective of gradient optimization. Section 5.3 derives pvi; we de-
velop four proximity constraints and two algorithms for optimizing the elbo. We study

fourmodels in Section 5.4: a Bernoulli factormodel, a sigmoid belief network (Mnih and

Rezende, 2016), a variational autoencoder (Kingma and Welling, 2014; Rezende et al.,

2014), and a deep exponential family model of text (Ranganath et al., 2015). pvi outper-
forms classical methods for variational inference.
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RelatedWork. Recentwork has proposed several related algorithms. Khan et al. (2015)

and Theis and Hoffman (2015) develop a method to optimize the elbo that imposes a

soft limit on the change in kl of consecutive variational approximations. This is equiv-

alent to pvi with identity proximity statistics and a kl distance function. Khan et al.

(2016) extend both prior works to other divergence functions. Their general approach is

equivalent to pvi identity proximity statistics and distance functions given by strongly-

convex divergences. Compared to prior work, pvi generalizes to a broader class of prox-

imity statistics. Wedevelopproximity statistics basedon entropy,kl, orthogonalweight
matrices, and the mean and variance of the variational approximation.

The problem of model pruning in variational inference has also been studied and ana-

lytically solved in a matrix factorization model in Nakajima et al. (2013)—this method is

model-specific, whereaspvi applies to amuchbroader class of latent variablemodels. Fi-

nally, deterministic annealing (Katahira et al., 2008) consists of adding a temperature pa-

rameter to the entropy term in the elbo that initialized to a large value then annealed to

unity during inference. This is similar to pviwith the entropy proximity statistic which

keeps the entropy stable across iterations. Deterministic annealing enforces global pe-

nalization of low-entropy configurations of latent variables rather than the smooth con-

straint used in pvi, and cannot accommodate the range of proximity statistics we design

in this work.

5.2 Variational Inference

Consider amodel𝑝(𝐱, 𝐳), where𝐱 is theobserveddata and 𝐳 are the latent variables. Asde-

scribed in Section 5.1, vi posits an approximating family 𝑞(𝐳; 𝝀) andmaximizes the elbo
in Equation (5.1). Solving this optimization is equivalent to finding the variational ap-

proximation that minimizes kl divergence to the exact posterior (Jordan et al., 1999;

Wainwright and Jordan, 2008).
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5.2.1 Gradient Ascent has Euclidean Proximity

Gradient ascent maximizes the elbo by repeatedly following its gradient. One view of

this algorithm is that it repeatedly maximizes the linearized elbo subject to a proxim-

ity constraint on the current variational parameter (Spall, 2003). The name ‘proximity’

comes from constraining subsequent parameters to remain close in the proximity statis-

tic. In gradient ascent, the proximity statistic for the variational parameters is the iden-

tity function 𝑓(𝝀) = 𝝀, and the distance function is the square difference.

Let 𝝀𝑡 be the variational parameters at iteration 𝑡 and 𝜌 be a constant. To obtain the next

iterate 𝝀𝑡+1, gradient ascent maximizes the linearized elbo,

𝑈(𝝀𝑡+1) = ℒ(𝝀𝑡) + ∇ℒ(𝝀𝑡)⊤(𝝀𝑡+1 − 𝝀𝑡) −
1
2𝜌(𝝀𝑡+1 − 𝝀𝑡)⊤(𝝀𝑡+1 − 𝝀𝑡). (5.2)

Specifically, this is the linearized elbo around 𝝀𝑡, subject to 𝝀𝑡+1 being close to 𝝀𝑡 in

squared Euclidean distance.

Finding the 𝝀𝑡+1 which maximizes Equation (5.2) yields

𝝀𝑡+1 = 𝝀𝑡 + 𝜌∇ℒ(𝝀𝑡). (5.3)

This is the familiar gradient ascent update with a step size of 𝜌. The step size 𝜌 controls

the radius of the Euclidean ball which demarcates valid next steps for the parameters.

Note that theEuclidean constraint between subsequent iterates is implicit in all gradient

ascent algorithms.

66



5.2.2 An Example where Variational Inference Fails

We study a setting where variational inference suffers from poor local optima. Consider

a factor model, with Bernoulli latent variables andGaussian likelihood:

𝑧𝑖𝑘 ∼ Bernoulli(𝜋) (5.4)

𝑥𝑖 ∼ Gaussian (𝜇 = ∑𝑘 𝑧𝑖𝑘𝜇𝑘, 𝜎2 = 1) . (5.5)

This is a “feature” model of real-valued data 𝑥; when one of the features is on (i.e., 𝑧𝑖𝑘 =

1), the 𝑖th mean shifts according the that feature’s mean parameter (i.e., 𝜇𝑘). Thus the

binary latent variables 𝑧𝑖𝑘 control which cluster means 𝜇𝑘 contribute to the distribution

of 𝑥𝑖.

The Bernoulli prior is parametrized by 𝜋; we choose a Bernoulli approximate posterior

𝑞(𝑧𝑘; 𝜆𝑘) = Bernoulli(𝜆𝑘). Acommonapproach tovi is coordinate ascent (Bishop, 2006),
where we iteratively optimize each variational parameter. The optimal variational pa-

rameter for 𝑧𝑖𝑘 is

𝜆𝑖𝑘 ∝ exp {𝔼−𝑧𝑖𝑘 [−
1
2𝜎2 (𝑥𝑖 −∑

𝑗
𝑧𝑖𝑗𝜇𝑗)2]} . (5.6)

We can use this update in a variational expectation-maximization setting. The corre-

sponding gradient for 𝜇𝑘 is

𝜕ℒ
𝜕𝜇𝑘

= − 1
𝜎2 ∑𝑖

(−𝑥𝑖𝜆𝑖𝑘 + 𝜆𝑖𝑘𝜇𝑘 + 𝜆𝑖𝑘 ∑
𝑗≠𝑘

𝜆𝑖𝑗𝜇𝑗) . (5.7)

Meditating on these two equations reveals a deficiency in mean field variational infer-

ence. First, if the mean parameters 𝜇 are initialized far from the data then 𝑞∗(𝑧𝑖𝑘 = 1)

will be very small. The reason is in Equation (5.6), where the squared difference between

the data 𝑥𝑖 and the expected cluster mean will be large and negative. Second, when the

probability of cluster assignment is close to zero, 𝜆𝑖𝑘 is small. This means that the norm

of the gradient in Equation (5.7) will be small. Consequently, learning will be slow. We
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Algorithm 1: Proximity Variational Inference
Input: Initial parameters 𝝀0, proximity statistic 𝑓(𝝀), distance function 𝑑
Output: Parameters 𝝀 of variational 𝑞(𝝀) that maximize the elbo objective
whileℒ not converged do

𝝀𝑡+1 ← 𝝀𝑡 +Noise
whileU not converged do

Update 𝝀𝑡+1 ← 𝝀𝑡+1 + 𝜌∇𝝀𝑈(𝝀𝑡+1)
end
𝝀𝑡 ← 𝝀𝑡+1

end
return 𝝀

see this phenomenon in Figure 5.1 (a). Variational inference arrives at poor local optima

and does not recover the correct cluster means.

5.3 Proximity Variational Inference

We now develop pvi, a variational inference method that is robust to initialization and

can consistently reach good local optima (Section 5.3.1). pvi alters the notion of prox-

imity. We further restrict the iterates of the variational parameters by deforming the

Euclidean ball implicit in classical gradient ascent. This is done by choosing proximity

statistics that are not the identity function, anddistance functions that are different than

the square difference. These design choices help guide the variational parameters away

frompoor local optima (Section 5.3.2). Onedrawbackof theproximityperspective is that

it requires an inner optimization at each step of the outer optimization. We use a Taylor

expansion to avoid this computational burden (Section 5.3.3).

5.3.1 Proximity Constraints for Variational Inference

pvi enriches the proximity constraint in gradient ascent of the elbo. We want to de-

velop constraints on the iterates 𝝀𝑡 to counter the pathologies of standard variational

inference.
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Let 𝑓(⋅) be a proximity statistic, and let 𝑑 be a differentiable distance function that mea-

sures distance between proximity statistic iterates. A proximity constraint is the combi-

nation of a distance function 𝑑 applied to a proximity statistic 𝑓. (Recall that in classical

gradient ascent, the Euclidean proximity constraint uses the identity as the proximity

statistic and the square difference as the distance.) Let 𝑘 be the scalar magnitude of the

proximity constraint. We define the proximity update equation for the variational pa-

rameters 𝝀𝑡+1 to be

𝑈(𝝀𝑡+1) =ℒ(𝝀𝑡) + ∇ℒ(𝝀𝑡)⊤(𝝀𝑡+1 − 𝝀𝑡) −
1
2𝜌(𝝀𝑡+1 − 𝝀𝑡)⊤(𝝀𝑡+1 − 𝝀𝑡) − 𝑘 ⋅ 𝑑(𝑓( ̃𝝀), 𝑓(𝝀𝑡+1)),

(5.8)

where ̃𝝀 is the variational parameter to which we are measuring closeness. In gradient

ascent, this is the previous parameter ̃𝝀 = 𝝀𝑡, but our construction can enforce proximity

tomore than just thepreviousparameters. For example, we can set ̃𝝀 tobe anexponential

moving average1—this adds robustness to one-update optimization missteps.

Thenext parameters are foundbymaximizingEquation (5.8). This enforces that the vari-

ational parameters between updates will remain close in the proximity statistic 𝑓(𝝀). For

example, 𝑓(𝝀)might be the entropyof the variational approximation; this can avoid zero-

ing out some of its support. This procedure is detailed in Algorithm 1. Themagnitude 𝑘

of the constraint is a hyperparameter. The inner optimization loopoptimizes the update

equation𝑈 at each step.

5.3.2 Proximity Statistics for Variational Inference

We describe four proximity statistics 𝑓(𝝀) appropriate for variational inference. To-

gether with a distance function, these proximity statistics yield proximity constraints.

(We study them in Section 5.4.)

1The exponential moving average of a variable 𝝀 is denoted ̃𝝀 and is updated according to ̃𝝀 ← 𝛼 ̃𝝀 + (1−
𝛼)𝝀, where 𝛼 is a decay close to one.
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Algorithm 2: Fast Proximity Variational Inference
Input: Initial parameters 𝝀0, adaptive learning rate optimizer, proximity statistic

𝑓(𝝀), distance 𝑑
Output: Parameters 𝝀 of the variational distribution 𝑞(𝝀) that maximize the elbo

objective
whileℒproximity not converged do

𝝀𝑡+1 = 𝝀𝑡 + 𝜌(∇ℒ(𝝀𝑡) − 𝑘 ⋅ (∇𝑑(𝑓( ̃𝝀), 𝑓(𝝀𝑡))∇𝑓(𝝀𝑡)).
̃𝝀 = 𝛼 ̃𝝀 + (1 − 𝛼)𝝀𝑡+1

end
return 𝝀

Entropy Proximity Statistic. Consider a constraint built from the entropy proximity

statistic, 𝑓(𝝀) =H(𝑞(𝐳; 𝝀)). Informally, the entropy measures the amount of randomness

present in adistribution. Highentropydistributions lookmoreuniformacross their sup-

port; low entropy distributions are peaky.

Using the entropy in Equation (5.8) constrains all updates to have entropy close to

their previous update. When the variational distributions are initialized with large

entropy, this statistic balances the “zero-forcing” issue that is intrinsic to variational

inference (MacKay, 2003). Figure 5.1 demonstrates how pvi with an entropy constraint

can correct this pathology.

KL Proximity Statistic. We can rewrite the elbo to include the kl between the ap-

proximate posterior and the prior (Kingma andWelling, 2014),

ℒ(𝝀) = 𝔼[log𝑝(𝐱 ∣ 𝐳)] −KL(𝑞(𝐳 ∣ 𝐱; 𝝀)||𝑝(𝐳)).

Flexible models tend to minimize the kl divergence too quickly and get stuck in poor

optima (Bowman et al., 2016). The choice of kl as a proximity statistic prevents the kl
from being optimized too quickly relative to the likelihood.

Mean/Variance Proximity Statistic. A common theme in the problems with varia-

tional inference is that thebulkof theprobabilitymass canquicklymove to apointwhere

that dimension will no longer be explored (Burda et al., 2015). One way to address this

70



is to restrict the mean and variance of the variational approximation to change slowly

during optimization. This constraint only allows higher order moments of the varia-

tional approximation to change rapidly. The mean 𝜇 = 𝔼𝑞(𝐳;𝝀)[𝐳] and variance Var(𝐳) =

𝔼𝑞(𝐳;𝝀)[(𝐳 − 𝜇)2] are the statistics 𝑓(𝝀)we constrain.

Orthogonal Proximity Statistic. In Bayesian deep learning models such as the vari-

ational autoencoder (Kingma and Welling, 2014; Rezende et al., 2014) it is common to

parametrize the variational distribution with a neural network. Orthogonal weight ma-

trices make optimization easier in neural networks by allowing gradients to propagate

further (Saxe et al., 2014). We can exploit this fact to design an orthogonal proximity

statistic for the weight matrices𝑊 of neural networks: 𝑓(𝑊) = 𝑊𝑊 ⊤. With an orthogo-

nal initialization for the weights, this statistic enables efficient optimization.

We gave four examples of proximity statistics that, together with a distance function,

yield proximity constraints. We emphasize that any function of the variational parame-

ters 𝑓(𝝀) can be designed to ameliorate issues with variational inference. We discuss how

to select a proximity statistic in Section 5.5.

5.3.3 Taylor-expanding the Proximity Constraint for Speed

pvi in Algorithm 1 requires optimizing the update equation, Equation (5.8), at each iter-

ation. This rarely has a closed-form solution and requires a separate optimization pro-

cedure that is computationally expensive.

An alternative is to use a first-orderTaylor expansion of the proximity constraint. Let∇𝑑

be the gradientwith respect to the second argument of the distance function, and𝑓( ̃𝝀)be

the first argument to the distance. We compute the expansion around 𝝀𝑡 (the variational
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parameters at step 𝑡),

𝑈(𝝀𝑡+1) =ℒ(𝝀𝑡) + ∇ℒ(𝝀𝑡)⊤(𝝀𝑡+1 − 𝝀𝑡)

− 1
2𝜌(𝝀𝑡+1 − 𝝀𝑡)⊤(𝝀𝑡+1 − 𝝀𝑡)

− 𝑘 ⋅ (𝑑(𝑓( ̃𝝀), 𝑓(𝝀𝑡))

+ ∇𝑑(𝑓( ̃𝝀), 𝑓(𝝀𝑡))∇𝑓(𝝀𝑡)⊤(𝝀𝑡+1 − 𝝀𝑡)).

This Taylor expansion enjoys a closed-form solution for the variational parameters

𝝀𝑡+1,

𝝀𝑡+1 = 𝝀𝑡 + 𝜌(∇ℒ(𝝀𝑡) − 𝑘 ⋅ (∇𝑑(𝑓( ̃𝝀), 𝑓(𝝀𝑡))∇𝑓(𝝀𝑡)). (5.9)

Note that setting ̃𝝀 to the current parameter 𝝀𝑡 removes the proximity constraint. Dis-

tance functions are minimized at zero so their derivative is zero at that point.

Fast pvi is detailed in Algorithm 2. Unlike pvi in Algorithm 1, the update in Equa-

tion (5.9) does not require an inner optimization. Fast pvi is tested in Section 5.4. The

complexity of fast pvi is similar to standard vi because fast pvi optimizes the elbo
subject to the distance constraint in 𝑓. (The added complexity comes from computing

the derivative of 𝑓; no inner optimization loop is required.)

Finally, note that fast pvi implies a global objective which varies over time. It is

ℒproximity(𝝀𝑡+1) =𝔼𝑞[log𝑝(𝐱, 𝐳)] − 𝔼𝑞[log 𝑞(𝝀𝑡+1)] − 𝑘 ⋅ 𝑑(𝑓( ̃𝝀), 𝑓(𝝀𝑡+1)).

Because 𝑑 is a distance, this remains a lower bound on the evidence, but where new vari-

ational approximations remain close in 𝑓 to previous iterations’ distributions.
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InferenceMethod elbo Likelihood
Variational Inference −121.4 −113.7
Deterministic Annealing −116.8 −108.8
pvi, Entropy Constraint −113.3 −106.7
pvi, Mean/Variance Constraint −114.9 −107.4

Table 5.1: Proximity variational inference improves on deterministic anneal-
ing (Katahira et al., 2008) and vi in a one-layer sigmoid belief network. We report
the test set evidence lower bound (elbo) andmarginal likelihood on the binaryMNIST
dataset (Larochelle and Murray, 2011). The model has one stochastic layer of 200 latent
variables. pvi outperforms deterministic annealing (Katahira et al., 2008) and the clas-
sical variational inference algorithm.

5.4 Empirical Study

Wedevelopedproximity variational inference (pvi). Wenowempirically study pvi, vari-
ational inference, and deterministic annealing (Katahira et al., 2008).2

We first study sigmoid belief networks and find that pvi improves over deterministic

annealing and vi in terms of held-out values of the elbo and marginal likelihood. We

then study a variational autoencoder model of images. Using an orthogonal proximity

statistic, we show that pvi improves over classical vi by reducing overpruning. Finally,

we study a deep generative model fit to a large corpus of text, where pvi yields better
predictive performance with little hyperparameter tuning.3

Hyperparameters. For pvi, we use the inverse Huber distance for 𝑑.4 The inverse

Huber distance penalizes smaller values than the square difference. For pviAlgorithm 2,

we set the exponential moving average decay constant for ̃𝝀 to 𝛼 = 0.9999. We set the

constraint scale 𝑘 (or temperature parameter in deterministic annealing) to the initial

absolute value of the elbo unless otherwise specified. We explore two annealing sched-

2Source code for reproducibility is available at https://github.com/altosaar/proximity_vi.
3We also compared pvi to Khan et al. (2015). Specifically, we tested pvi on the Bayesian logistic regres-

sionmodel from that paper and with the same data. Because Bayesian logistic regression has a single mode,
all methods performed equally well. We note that we could not apply their algorithm to the sigmoid belief
network because it would require approximating difficult iterated expectations.

4Wedefine the inverseHuber distance 𝑑(𝑥, 𝑦) to be |𝑥−𝑦| if |𝑥−𝑦| < 1 and 0.5(𝑥−𝑦)2+0.5 otherwise.
The constants ensure the function and its derivative are continuous at |𝑥 − 𝑦| = 1.
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InferenceMethod elbo Likelihood
Variational Inference −116.2 −104.9
Deterministic Annealing −102.0 −94.2
pvi, Entropy Constraint −99.7 −93.2
pvi, Mean/Variance Constraint −100.7 −93.3

Table 5.2: Proximity variational inference improves over deterministic annealing
and vi in a three-layer sigmoid belief network. The model has three layers of 200 la-
tent variables. We report the evidence lower bound (elbo) and marginal likelihood on
theMNIST test set (Larochelle andMurray, 2011).

ules for pvi and deterministic annealing: a linear decay and an exponential decay. For

the exponential decay, the value of themagnitude at iteration 𝑡 of 𝑇 total iterations is set

to 𝑘 ⋅ 𝛾
𝑡
𝑇 where 𝛾 is the decay rate. We use the Adam optimizer (Kingma and Ba, 2015)

unless otherwise specified.

5.4.1 Sigmoid Belief Network

The sigmoid belief network is a discrete latent variablemodel with layers of Bernoulli la-

tent variables (Neal, 1992; Ranganath et al., 2015). It is used to benchmark variational in-

ference algorithms (Mnih andRezende, 2016). The approximate posterior is a collection

of Bernoullis, parameterized by an inference network with weights and biases. We fit

these variational parameters with vi, deterministic annealing (Katahira et al., 2008), or

pvi, and learn the model parameters (weights and biases) using variational expectation-

maximization.

We learn the weights and biases of the model with gradient ascent. We use a step

size of 𝜌 = 10−3 and train for 4 × 106 iterations with a batch size of 20. For pvi Algo-

rithm 2 and deterministic annealing, we grid search over exponential decays with rates

𝛾 ∈ {10−5, 10−6, ..., 10−10, 10−20, 10−30} and report the best results for each algorithm. (We

also explored linear decays but they did not perform as well.) To reduce the variance

of the gradients, we use the leave-one-out control variate of Mnih and Rezende (2016)

with 5 samples. (This is an extension to the black box variational inference algorithm in

Ranganath et al. (2014).)
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InferenceMethod elbo Likelihood
Variational Inference −101.0 −94.2
pvi, Orthogonal Constraint −100.4 −93.9

Table 5.3: Proximity variational inference with an orthogonal proximity statis-
tic makes optimization easier in a variational autoencoder model (Kingma and
Welling, 2014; Rezende et al., 2014). We report the held-out evidence lower bound
(elbo) and estimates of the marginal likelihood on the binarized MNIST (Larochelle
andMurray, 2011) test set.

Results onMNIST. We train a sigmoid belief network model on the binary MNIST

dataset of handwritten digits (Larochelle andMurray, 2011). For evaluation, we compute

the elbo and held-out marginal likelihood with importance sampling on the validation

set of 104 digits using 5000 samples, as in Rezende et al. (2014). In Table 1 we show the

results for a model with one layer of 200 latent variables. Table 5.2 displays similar results

for a three-layer model with 200 latent variables per layer. In both one and three-layer

models the kl proximity statistic performs worse than the mean/variance and entropy

statistics; it requires different decay schedules. Overall, pviwith the entropy andmean/-

variance proximity statistics yields improvements in the held-out marginal likelihood in

comparison to deterministic annealing and vi.

5.4.2 Variational Autoencoder

To demonstrate the value of designing proximity statistics tailored to specific models,

we study the variational autoencoder (Kingma andWelling, 2014; Rezende et al., 2014).

This model is difficult to optimize, and current optimization techniques yield solutions

that do not use the fullmodel capacity (Burda et al., 2015). In Section 5.3.2we designed an

orthogonal proximity statistic to make backpropagation in neural networks easier. We

showthat this statistic enables us tofindabetter approximateposterior in the variational

autoencoder by reducing overpruning.

We fit the variational autoencoder to binaryMNIST data (Larochelle andMurray, 2011)

with variational expectation-maximization. Themodel has one layer of 100Gaussian la-
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tent variables. The inference network and generative network are chosen to have two

hidden layers of size 200 with rectified linear units. We use an orthogonal initialization

for the inference networkweights. The learning rate is set to 10−3 andwe run vi and pvi
for 5 × 104 iterations. The orthogonal proximity statistic changes rapidly during opti-

mization, so we use constraint magnitudes 𝑘 ∈ {1, 10−1, 10−2, ..., 10−5}, with no decay, and

report the best result.

We compute the elbo and importance-sampled marginal likelihood estimates on the

validation set. Table 5.3 shows that pvi with the orthogonal proximity statistic on

the weights of the inference network enables easier optimization and improves over

vi.

Why does pvi improve upon vi in the variational autoencoder? The choice of recti-

fied linear units in the inference network allows us to study overpruning of the latent

code (MacKay, 2001; Burda et al., 2015). We study the fraction of ‘dead units’— the frac-

tion of rectified linear units in each layer of the inference neural network whose input is

below zero. With pvi Algorithm 2 and the orthogonal proximity constraint, the infer-

ence network has 1.6% fewer dead units in the hidden layer and shows a 3.2% reduction in

the output layer than in the samemodel learned using classic variational inference.

Once the input to a rectified linear unit drops below zero, the unit stops receiving gradi-

entupdates. Theoutput layerparametrizes the latent variabledistribution, so thismeans

pvi reduced the pruning of the approximate posterior and led to the utilization of 3 ad-

ditional latent variables. This is the reason it outperformed a variational autoencoder fit

with vi.

5.4.3 DeepGenerativeModel of Text

Deep exponential family models, Bayesian analogues to neural networks, represent a

flexible class ofmodels (Ranganath et al., 2015). However, blackbox variational inference

is commonly used to fit these models, which requires variance reduction (Ranganath et

al., 2014). Deep exponential family models with Poisson latent variables present a chal-
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InferenceMethod Perplexity
Variational Inference 2329
pvi, Mean/Variance Constraint 2294

Table5.4: Proximityvariational inferencewithamean/varianceproximity statistic
improvespredictiveperformance in adeepexponential familymodelwithPoisson
latent variables. We report the held-out perplexity on the Science corpus of journal arti-
cles.

lenging approximate inference problembecause they are discrete and high-variance. We

demonstrate that pviwith the mean/variance proximity constraint improves predictive

performance in such an unsupervised model of text.

The generative process for a single-layer deep exponential family model of text, with

Poisson latent variables and Poisson likelihood, is

𝐳 ∼ Poisson(𝝀)

𝐱 ∼ Poisson(𝐳⊤𝑔(𝑊)) ,

where𝑊 are real-valued model parameters and 𝑔 is an elementwise function that maps

to the positive reals (we use the softplus function). The dimension of 𝐳 is𝐾, so themodel

parameters must have shape (𝐾, 𝑉) where 𝑉 is the cardinality of the count-valued obser-

vations 𝐱. We use this as a model of documents, so 𝐱 is the bag-of-words representation

of word counts,𝑊 represents the common factors in documents, and the per-document

latent variable 𝐳 captures factors prevalent in documents’ language.

We study the performance of ourmethod on a corpus of articles from the academic jour-

nal Science. The corpus contains 138k documents in the training set, 1k documents in the

test set, and 5.9k terms. We set the latent dimension to 100, and fit the variational Pois-

son parameters using black box variational inference (Ranganath et al., 2014) usingmini-

batches of size 64 and 32 samples of the latent variables to estimate the gradients.

Poisson variables have high variance, so we use the optimal control variate scaling de-

veloped in Ranganath et al. (2014) and estimate this scaling in a round-robin fashion as
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university fig disease
new dna virus

department protein hiv
york cells aids

research cell human
science gene patients
state binding diseases

laboratory two cases
national sequence infection
california proteins infected

Table 5.5: The top ten words for three factors of a deep exponential family model
withPoisson latent variablesfit to theScience corpusof scientific articles. Weshow
topics from a model fit with proximity variational inference; the topics for the same
model fit with variational inference are similar.

in Mnih and Rezende (2016) for efficiency. We use the RMSProp adaptive gradient op-

timizer (Tieleman and Hinton, 2012) with a step size of 0.01. For pvi Algorithm 2 with

themean/varianceproximity statistic, weuse an exponential decay for the constraint and

test decay rates 𝛾of 10−5 and 10−10. We train for 106 iterations on the Science corpus, using
variational expectation-maximization to learn the model parameters.

For evaluation, we keep the model parameters fixed and hold out 90% of the words in

each document in the test set. Using the 10% of observed words in each document, we

learn the variational parameters using pvi or variational inferencewith 300 iterations per
document. We compute perplexity on the held-out documents, which is given by

exp (
−∑𝑑∈docs∑𝑤∈𝑑 log𝑝(𝑤 ∣ # held-out in d)

𝑁held-out words
) .

Conditional on the number of held-out words in a document, the distribution over held-

out words is multinomial. The mean of the conditional multinomial is the normalized

Poisson rate of the documentmatrix-multiplied with the softplus of the weights. This is

the same evaluationmetric as in Ranganath et al. (2015). The results of fitting themodel

to the corpus of Science documents are reported in Table 5.4 and Table 5.5. While the

topics found by models fit with both pvi and vi are similar, pvi gives better predictive
performance in terms of held-out perplexity.
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5.5 Discussion

We presented proximity variational inference, a flexible method designed to avoid bad

local optima. We showed that classic variational inference gets trapped in these local op-

tima and cannot recover. The choice of proximity statistic 𝑓 and distance 𝑑 enables the

design of a variety of constraints that improve optimization. As examples of proximity

statistics, we gave the entropy, kl divergence, orthogonal proximity statistic, and the

mean and variance of the approximate posterior. We evaluated ourmethod in fourmod-

els to demonstrate that it is easy to implement, readily extensible, and leads to beneficial

statistical properties of variational inference algorithms.

The empirical results also yield guidelines for choosing proximity statistics. The entropy

is useful formodelswithdiscrete latent variableswhich areprone toquickly getting stuck

in local optima or flat regions of the objective. We also saw that the kl statistic gives

poor performance empirically, and that the orthogonal proximity statistic reduces prun-

ing in deep generative models such as the variational autoencoder. In models like the

deep exponential familymodel of text, the entropy is not tractable so themean/variance

proximity statistic is a natural choice.

FutureWork. Simplifying optimization is necessary for truly black-box variational in-

ference. An adaptive magnitude decay based on the value of the constraint should fur-

ther improve the technique (this could be done per-parameter). New proximity con-

straints are also easy to design and test. For example, the variance of the gradients of

the variational parameters is a valid proximity statistic—which can be used to avoid vari-

ational approximations that have high-variance gradients. Another set of interesting

proximity statistics are empirical statistics of the variational distribution, such as the

mean, for when analytic forms are unavailable. We also leave the design and study of

constraints that admit coordinate updates to future work.
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Chapter 6

Discussion

robabilistic modeling is useful across scientific domains. However, proba-

bilistic modeling methods that do not take into account the structure of a

problem, the formof individual datapoints, or information about probability

distributions during optimization leave performance gains on the table.

As amotivating example, we built the structure of a statistical physicsmodel into a prob-

abilisticmodelingmethodwith hierarchical variational models. Efficient use of the con-

nectivity patterns in physics models enabled scaling variational approximations tomod-

els with millions of random variables.

There is also utility in constructing probabilistic models with knowledge about individ-

ual datapoints. rankfromsetsoutperformscompetitive recommendationmodels that

either fail to take into account the goals of recommendation or the structure of items

with sets of attributes.

We also improved variational inference, bymaking use of information about probability

distributions within the proximity variational inference algorithm. This enabled accu-

rate inferences about probability distributions.
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InferenceMethod Free Energy
Variational Inference −2.144
pvi, Entropy Constraint −2.158

Table 6.1: Proximity variational inferencewith the entropy proximity statistic im-
proves the accuracy of an hvm applied to an Ising model with 256 random vari-
ables. Building on the tools developed in Chapter 3 and Chapter 5, we report an impor-
tance sampling estimate of the free energy (lower is better; the exact value is 𝐹 ≈ −2.198
at inverse temperature 𝛽 = 0.4).

To further unify the thesis of problemstructure as utile in probabilisticmodeling, we test

proximity variational inference tomeasurewhether thebenefits of leveragingknowledge

about a probability distributions are additive to performance gains from developing ap-

plied methods.

Consider an Isingmodel studied inChapter 3, where the goal is accurate inference of the

free energy. Table 6.1 shows a comparison between vi and pvi in an hvm. This is a re-

sult of testing the best-performing settings from Chapter 5 with the entropy constraint

on both the variational prior and recursive variational approximation in an hvm. The

additional information pvimakes available to the variational approximation during op-

timization leads to more accurate inference of the free energy.

Further, pvi can be applied to probability models fit with maximum likelihood estima-

tion. Table 6.2 reports the performance of a rfs model from Section 4.4 fit to arXiv

user behavior data. Fitting the recommendation model using the pvi entropy proxim-

ity constraint improves top-10 recommendation recall. Metrics other than out-matrix

recall (e.g. in-matrix recall) were comparable between these methods. With the pvi en-
tropy constraint, the recommendation performance of rfs also improved in the meal

recommendation task. Table 6.3 reports these results. The best-performing settings

fromChapter 5 generalize to maximum likelihood estimation in recommender systems,

here giving a 6.9% boost in top-1 recommender recall.

Thatpvi yielded improvementswhen applied tobothhvms applied to statistical physics

problems and the rfs recommendation model highlights several directions for further
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Model Recall @ 10 (%) Recall @ 100 (%)
rfs 0.32 2.54
rfs, Entropy Constraint 0.44 2.54

Table 6.2: Proximity variational inferencewith the entropyproximity statistic im-
proves top-10out-matrix recall of rfsfit toarXivuserbehaviordata. Wereport the
recall for items with no clicks in the training data (described in Section 4.4) for the best-
performing settings of both pvi and rfs. Recall at 100 recommendations is comparable
between the methods.

Model Sampled Recall (%)
rfs 58
rfs, Entropy Constraint 62

Table 6.3: Proximity variational inferencewith the entropy proximity statistic im-
proves top-1 recall on ameal recommendation task.

research. First, might pvi yield further gains in accuracy when applied to statistical

physics models with millions of random variables? Practitioners are willing to trade off

diminished accuracy for scale in some cases, and pvi is straightforward to test in new

probability models andmight help reduce the need for such trade-offs.

Studying where pvi yields marginal gains is also worth considering. For example, the

entropy proximity constraint yielded less-significant improvementswhen applied torfs
fit to the meal recommendation data in Section 4.4. This may be because the large size

of data helped prevent overfitting, leading to reduced benefits of constraining parameter

updates. In contrast,hvms fit to statistical physics models in Section 3.3 converged to a

solution very quickly, so monitoring convergence rates may be an additional source of

information for proximity statistics.

While Chapter 3 studied classical statistical physics models, future work in computa-

tional materials science and computational drug discovery will need to incorporate or

approximate quantum effects. Density functional theory calculations based on quan-

tum mechanics are expensive (Schmidt et al., 2019) and limit the length of time that a

material or drug binding to a protein can be simulated. Future work in this area should
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include study of the trade-off between the size of a system and the accuracy needed to

study the behavior of a system to achieve a materials design or drug design goal. For ex-

ample, suppose the behavior of a drug binding to a protein over the course of several

seconds is of clinical interest. Then a practitioner might tolerate more inaccuracy in an

hvm approximation than they would if the short-run behavior could be accurately cap-

tured in a density functional theory calculation. Oneway of improving the trade-offmay

be to reduce the cost of fitting hvms by derive objective functions with better gradient

signal-to-noise ratio (Tucker et al., 2019; Rainforth et al., 2018). A similar trade-off oc-

curs for system size, and it is unclear where hvms may provide the only way to model a

large-scale physical system.

Chapter 4 developed rfs, and there remain several directions for future work on rec-

ommendation models for items with sets of attributes. Probabilistic generative models

for use in recommendation may enable better recommendations under uncertainty, or

easier incorporation of prior knowledge. However, probability distributions of sets of

attributes are difficult to parameterize. One example of a distribution defined on sets is

theWallenius distribution (Wallenius, 1963; Junqu et al., 2000). It is interesting to con-

sider how a distribution on sets might be parameterized using a permutation-invariant

model such asrfs (Bloem-Reddy andTeh, 2019; Lee et al., 2018). Further, generalization

bounds are necessary follow-up work to universal approximation properties. A model

may be able to represent a distribution, but for practical purposes a key desideratum is

finding functions, nonlinearities, andarchitectures thatmakeoptimizationeasy andgen-

eralization feasible (Dziugaite and Roy, 2017).

Another line of work is in developing robust negative sampling-based objective func-

tions. The numeric value of the negative log-likelihood objective function used inrfs or
other models that use negative samples and embeddings cannot reliably assess conver-

gence. This is due to embeddings that are used in both positive and negative examples,

leading stochastic gradient updates to increase and decrease Monte Carlo estimates of

the objective during optimization. Reliable methods to estimate the value of objective
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functionsmay help reduce the need for expensive recommender systems evaluationmet-

rics where a model may need to be evaluated on every item in an evaluation set. While

rfs was designed for the recall evaluation metric, connecting binary classification ob-

jective functions with negative examples to ranking-based metrics such as normalized

discounted cumulative gain would make these models useful broadly.

In Chapter 4, we found that rfs outperforms lstm recurrent neural networks in the

task of recommending arXiv documents to users. This is counterintuitive, as the or-

der of item attributes (words in abstracts) should carry significant information. How-

ever, the computational budget was fixed for both models, and it is unclear which rec-

ommendation model to use with a large computational budget. Models such as trans-

formers (Vaswani et al., 2017; Devlin et al., 2019; Lee et al., 2018) might lead to improved

recommendation performance, but at a greater computational cost than models such as

rfswith inner product parameterizations. Analyzing these trade-offs will helpmake in-

formed choices of computational budget given performance requirements in practice.

Under computational constraints due to monetary budget or privacy regulation, such as

in clinical settings (Huang et al., 2020), models such as rfs thatmake fast, accurate, pre-

dictions may be preferable to more accurate, slower models.

Through careful consideration of how to build problem structure into probabilistic

models, we were able to scale variational methods to statistical physics models withmil-

lions of randomvariables, fit recommender systems to tens ofmillions of datapoints, and

improve the accuracy of variational inference. This highlights the need to ensure that

progress in probabilistic modeling continues to be translated into progress in applied

domains such as statistical physics and recommender systems.
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