
Recommending Interesting Writing using a Controllable,
Explanation-Aware Visual Interface

Rohan Bansal
The Browser

rohan@thebrowser.com

Jordan Olmstead
The Browser

jordan@thebrowser.com

Uri Bram
The Browser

uri@thebrowser.com

Robert Cottrell
The Browser

robert@thebrowser.com

Gabriel Reder
Stanford University

gkreder@stanford.edu

Jaan Altosaar
Princeton University

altosaar@princeton.edu

RankFromSetsData Collection
Visual
Interface

Human
Evaluation

Figure 1: End-to-end pipeline for recommending writing to editors at The Browser with a controllable, explanation-aware visual
interface. The RANKFROMSETS recommendation model [2] is trained on data consisting of positive examples from the editors’
history of curated articles, and negative examples from news sources. After training and offline evaluation of the recommendation
model, RANKFROMSETS is deployed as a microservice on Amazon Web Services Lambda, with the visual interface hosted on
Github Pages. Editors can control the recommender system using the visual interface, which can aid in their decision-making. The
editors’ interrogation of the recommendation model informs further data collection and training.

ABSTRACT
We build a visual interface for recommending articles to edi-
tors at The Browser, a curation service for interesting writing.
From a large list of candidates, editors decide which articles
are selected and shared with subscribers. To aid the editors
in this decision-making task, we build a visual interface for
a recommendation model, RANKFROMSETS (RFS) [2], that
classifies articles based on their words. Control of the recom-
mendation model is built into the visual interface. For example,
an editor can use a topic slider to receive a new list of recom-
mendations according to topical words in articles. These topic
sliders might be used to increase or decrease the ranking of
articles with words related to crime, business, or technology.
The visual interface is also designed to be explanation-aware:
words that contribute positively or negatively to an article’s
ranking are displayed. For the backend of the visual interface,
RFS is trained on historical data. In an offline empirical study,
we find that RFS outperforms BERT [4], a competitive classifi-
cation model, in terms of recall. Further, we measure RFS to
be 10 times faster to train and to return predictions 2000 times
faster than BERT. This speed is a beneficial property for the
visual interface, and we demonstrate that RFS can be deployed
on the free tier of AWS Lambda using a short python script
and numpy dependency. For reproducibility, transparency, and
trust of the visual interface, we open source and release a pub-

Copyright (c) 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).
IntRS ’20 - Joint Workshop on Interfaces and Human Decision Making for Recom-
mender Systems, September 26, 2020, Virtual Event

lic demonstration,1 data collection, training and deployment
scripts, and model parameters.2

Author Keywords
content-based recommendation, open source, visual interface

CCS Concepts
•Applied computing→ Document searching; •Computing
methodologies→ Learning from implicit feedback; Please
use the 2012 Classifiers and see this link to embed them in the
text: https://dl.acm.org/ccs/ccs_flat.cfm

INTRODUCTION
Creative nonfiction, longform journalism, and blog posts are
examples of the types of articles curated by The Browser’s
team of editors. The editors read a large number of articles
from various publications to select content to recommend to
subscribers.

In building a recommender system to help editors sift through
many documents, it is motivating to highlight the trade-off in
user privacy intrinsic to recommender systems. A machine
learning model must exploit information about a user. How-
ever, the incentive structures of operating a recommender sys-
tem within a business can influence decisions around privacy
and transparency [5]. For example, business models that rely

1https://the-browser.github.io/
recommending-interesting-writing/
2https://github.com/the-browser/
recommending-interesting-writing

https://dl.acm.org/ccs/ccs_flat.cfm
https://the-browser.github.io/recommending-interesting-writing/
https://the-browser.github.io/recommending-interesting-writing/
https://github.com/the-browser/recommending-interesting-writing
https://github.com/the-browser/recommending-interesting-writing

Figure 2: Visual interface to RANKFROMSETS includes topic
sliders for setting user preferences as well as most important
topic words for each found article

on online advertising may engender recommender systems
that upweight attention-grabbing content and hence time spent
looking at ads. Such content might maximize a user’s time
spent with a service over time at the expense of long-term
user experience or consent. In comparison, privacy-preserving
and open source tools such as the Signal encrypted messaging
service3 may provide improved user experience in terms of
privacy-preserving, transparent, and explainable algorithms
and visual interfaces [3]. But the incentive structures for re-
leasing recommender systems and visual interfaces that exploit
private information about users are poor. There are few exam-
ples of end-to-end, open source, free-to-deploy pipelines for
recommending content to users using a visual interface. This
motivates building and deploying a recommendation model
and corresponding explanation-aware visual interface to give
users control, and inform them about how data is being used
to make recommendations.

We build an end-to-end recommender system visual in-
terface to address two aims: (1) to aid editors at The
Browser in their decision-making task, and give them con-
trol through an explanation-aware interface, and (2) to release
a lightweight, performant, open-source visual interface frame-
work for explanation-aware recommender systems for docu-
ment recommendation. In an offline evaluation, we show that
the recommendation model we use for the visual interface out-
performs BERT, a competitive document classification model.
In a qualitative study, the control and explanations provided
by the visual interface help editors in their decision-making
and help find bugs in the recommendation model.

RECOMMENDATION MODEL
RANKFROMSETS (RFS) is the recommendation model that
powers the visual interface; the main part of the pipeline illus-
trated in Figure 1. RFS scales to large numbers of articles, and
can maximize the evaluation metric of recall [1, 2]. Recall, or
the fraction of true positives returned by a recommendation
model, is an appropriate evaluation metric for recommending
interesting writing to editors at The Browser. A recommenda-
tion model such as RFS can be readily backtested with recall
as an evaluation metric, as historical data contains positive
examples (articles selected by the editors) but rarely contains
3https://signal.org/

negative examples (articles seen but not selected by the ed-
itors). Further, as our goal is to build an explanation-aware
visual interface that can also serve to control recommenda-
tions, and RFS is fast, interpretable, and simple to integrate
into a user interface as we describe later.

RFS is a recommendation model defined by a binary classifier.
For a user u and item m with attributes xm (the set of unique
words in an article), RFS is described by the probability of
yum = 1 (user u consuming item m):

p(yum = 1 | u,m) = σ (f (u,xm)) ,

where σ is the sigmoid function. To parameterize the binary
classifier in RFS, we use an inner product architecture:

f (u,xm) = θ
>
u

(
1
|xm| ∑

j∈xm

β j

)
. (1)

In this architecture, the user embedding θu includes a dimen-
sion that is fixed to unity. Word embeddings β j (including a
bias dimension for every word) and the publication embed-
ding are fit with maximum likelihood estimation, and negative
examples are sampled uniformly at random to balance positive
examples [1].

VISUAL INTERFACE
The visual interface is designed with RFS as the backend rec-
ommendation model. We describe how the inner product archi-
tecture for RFS enables a visual interface that is interpretable
to provide explanations for why an item is recommended, and
enables control so users can filter recommendations to help
with decision-making.

Explanation-aware recommendation The user embedding
θu and word embeddings β j in Equation (1) can be used to
interpret a recommendation. The logit for a given document
with a set of words xm is the sum of per-word logits, which
are computed as the inner product of the user embedding and
word embedding. The per-word contribution of a word in a
document to the logit that determines the document’s ranking
in a list of recommendations is

wu j = θ
>
u β j . (2)

This weight wu j helps explain why a document was recom-
mended, using information about both the user u and the word
j. In the visual interface, words in a document are first sorted
by their contributions to a document’s logit wu j, and the top
words are displayed. Similarly, words that lower a document’s
ranking are also displayed, to inform a user of which words
detract from the recommendation of a document.

Interface for controlling recommendations In a decision-
making task, a user such as an editor for The Browser may
wish to filter recommendations according to topics such as
crime, technology, or business. The recommendations output
by RFS can be controlled, by altering the per-word contribu-
tions in Equation (2) according to whether a word is topical.
This is accomplished by first calculating words related to a
topic word using pre-trained word embeddings from BERT [4,
7]. Words related to a topic are defined by a heuristic: the
cosine similarity between all words and a topic word such

https://signal.org/

Recommendation Model Recall @ 1000 (%)

RANKFROMSETS 53.1
BERT 46.6

Table 1: RFS outperforms BERT in an offline evaluation, on a
task of predicting which articles editors at The Browser would
feature based on words in the articles.

as ‘business’ are computed, and the top 15 words closest in
cosine distance are stored as topical words. Then, a slider in a
visual interface is used to increase or decrease the per-word
contributions of topical words to a document’s logit. Let the
user-input slider value be α , and the set of topical word in-
dices be T . Then the user-controlled version of Equation (1)
becomes

f (u,xm)= θ
>
u

(
1
|xm| ∑

j∈xm

(1− I[j ∈ T])β j + I[j ∈ T]αsgn(wu j)β j

)
.

(3)
The sign function sgn(·) is applied to the per-word contribu-
tion to a document’s logit. This is included since a word might
contribute negatively to a document’s logit, yet a user may
wish to increase the weight of a related topical word.

EVALUATION
We conduct an offline empirical study of the performance of
RANKFROMSETS to assess its performance as a recommenda-
tion model. Then we qualitatively evaluate the visual interface
to study whether the explanation-aware, controllable interface
enabled by RFS can help make editors at The Browser make
better decisions.

Data collection and preprocessing For positive examples,
we use the historical set of articles curated by editors at The
Browser. We augment the training data with articles selected
by the editors of other curation services, and treat all positively-
labeled examples curated by editors as data from a single user
due to a paucity of data. We use articles from news websites as
examples with negative labels, and collect additional articles
with negative labels from websites most-featured by the editors
to mimic the editorial process of reading a large swath of
articles in a feed and distilling an article list to a select few.
For preprocessing the data we use the tokenizer released by
Devlin et al. [4] and discard words not recognized by the
tokenizer. This procedure results in a dictionary with 30k
words, and 646k datapoints with 27k positive labels.

Metrics Performance of the recommendation models is as-
sessed with recall, and 15% of the datapoints are held out for
the validation and test sets respectively.

Experimental setup: RankFromSets We cross-validate us-
ing the RMSProp optimizer [6] with a momentum of 0.9 and
grid search over learning rates of {10−2,10−3,10−4,10−5},
whether or not to initialize from pre-trained BERT embed-
dings [7], and embedding sizes of {10,25,50,100,500,1000}.
This model is trained on an NVIDIA Tesla P100 GPU.

Experimental setup: BERT To fine-tune BERT, we use the
AdamW optimizer with a linear learning rate scheduler and

0 500 1000 1500
Time (seconds)

0%

20%

40%

60%

R
ec

al
l

RankFromSets
BERT

Figure 3: RANKFROMSETS achieves better performance faster
than BERT in terms of validation recall during training.

warmup steps, with a batch size of 32 and maximum input
length of 512 as in Devlin et al. [4] and Wolf et al. [7]. A grid
search is performed over learning rates of {2,3,4,5}×10−5,
warmup steps of {102,103,104}, and total training steps of
{102,103,104,105}×5. The model is trained on an NVIDIA
Tesla V100 GPU.

The best-performing model of RFS is selected for deployment,
and recall is evaluated on the test set, after using early stopping
according to validation recall. The results are shown in Table 1,
and RFS outperforms BERT by 14%. Further, RFS achieves
better performance ten times faster than BERT, as shown in
Figure 3. In a test to measure the speed of recommending 104

held-out articles, RFS ranked all articles in 120 ms on a CPU,
while BERT took 4 m 54 s to rank the articles on an NVIDIA
Tesla V100 GPU. This represents a 2000-fold improvement in
speed, which is beneficial for the controllable visual interface
that requires Equation (3) to be quickly computed in response
to user input.

Qualitative evaluation In a user study, editors at The
Browser provided feedback that they used the visual interface
to choose articles, and found this to be an improved workflow.
The control over recommendations, and explanation-aware
visual interface provided by RFS helped elicit bugs in data col-
lection (such as foreign language sources, or fiction writing)
and provides an enjoyable user experience.

DEPLOYMENT
The visual interface is deployed on Github Pages, with the
backend, RFS, deployed as a microservice on Amazon Web
Services Lambda. Equation (3) is cheap to compute, so the
lambda function is a short python script that requires numpy
as a dependency, compared to BERT which would require a
hosted GPU solution. RFS recommends recent articles from
the editors’ reading list of feeds. As a proof of concept, we
include a tab for coronavirus-related articles that users can
search through using the sliders and Equation (3).

DISCUSSION
We built a visual interface for a recommender system powered
by RFS, a flexible recommendation model. Empirically, we
demonstrated that RFS outperforms BERT in an offline evalu-
ation, while being orders of magnitude faster during training
and recommendation. By deploying RFS to AWS Lambda and
hosting the visual interface on Github Pages, we demonstrated
a fully open-source pipeline for creating an explanation-aware,
controllable visual interface for document recommendation

for editorial decision-making. Future work includes studying
whether the transparency and control provided by open-source
recommendation systems can improve user experience and
inform users as to how recommendation models influence
attention online.

Acknowledgments
The authors are grateful to Christian Bjartli for help with data
collection.

References
[1] Jaan Altosaar. “Probabilistic Modeling of Structure in

Science: Statistical Physics to Recommender Systems”.
PhD thesis. Princeton University, 2020.

[2] Jaan Altosaar, Wesley Tansey, and Rajesh Ranganath.
“RankFromSets: Scalable Set Recommendation with Op-
timal Recall”. In: American Statistical Association Sym-
posium on Data Science & Statistics (2020).

[3] K. Cohn-Gordon et al. “A Formal Security Analysis of
the Signal Messaging Protocol”. In: 2017 IEEE European
Symposium on Security and Privacy (EuroS P). 2017,
pp. 451–466.

[4] Jacob Devlin et al. “BERT: Pre-training of Deep Bidi-
rectional Transformers for Language Understanding”. In:
Association for Computational Linguistics. Minneapolis,
Minnesota: Association for Computational Linguistics,
June 2019, pp. 4171–4186. DOI: 10.18653/v1/N19-1423.
URL: https://www.aclweb.org/anthology/N19-1423.

[5] Nicholas Diakopoulos. “Oxford Handbook of Ethics and
AI”. In: ed. by Markus Dubber, Frank Pasquale, and Sunit
Das. Oxford University Press, 2020. Chap. Accountabil-
ity, Transparency, and Algorithms.

[6] Tijmen Tieleman and Geoffrey Hinton. “Lecture 6.5-
rmsprop: Divide the gradient by a running average of its
recent magnitude.” In: COURSERA: Neural Networks
for Machine Learning (2012).

[7] Thomas Wolf et al. “HuggingFace’s Transformers: State-
of-the-art Natural Language Processing”. In: ArXiv
abs/1910.03771 (2019).

https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/N19-1423

	Introduction
	Recommendation Model
	Visual Interface
	Evaluation
	Deployment
	Discussion

