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Abstract
Clinical notes contain information about patients that goes beyond structured data like lab
values and medications. However, clinical notes have been underused relative to structured
data, because notes are high-dimensional and sparse. This work develops and evaluates
representations of clinical notes using bidirectional transformers (ClinicalBert). Clini-
calBert uncovers high-quality relationships between medical concepts as judged by hu-
mans. ClinicalBert outperforms baselines on 30-day hospital readmission prediction using
both discharge summaries and the first few days of notes in the intensive care unit. Code
and model parameters are available.1

1. Introduction

An electronic health record (ehr) stores patient information; it can save money, time, and
lives (Pedersen et al., 2017). Every day, more data gets added to an ehr, so analyses may
benefit from machine learning. Machine learning techniques leverage structured features in
ehr data, such as lab results and electrocardiography measurements, to uncover patterns
and improve predictions (Shickel et al., 2018; Xiao et al., 2018a; Yu et al., 2018). However,
unstructured, high-dimensional, and sparse information such as clinical notes are difficult
to use in clinical machine learning models. Our goal is to create a framework for modeling
clinical notes that can uncover clinical insights and make medical predictions.

Clinical notes contain significant clinical value (Boag et al., 2018; Weng et al., 2017; Liu
et al., 2018; Afzal et al., 2018). A patient might be associated with hundreds of notes within
a stay and over their history of admissions. Compared to structured features, clinical notes
provide a richer picture of the patient since they describe symptoms, reasons for diagnoses,
radiology results, daily activities, and patient history. Consider clinicians working in the

1. Code for reproducing results is available at https://github.com/kexinhuang12345/clinicalBERT and
model parameters can be found at http://bit.ly/clinicalbert_weights
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Figure 1: ClinicalBert learns deep representations of clinical notes that are useful
for tasks such as readmission prediction. In this example, care providers
add notes to an electronic health record during a patient’s admission, and the
model dynamically updates the patient’s risk of being readmitted within a 30-day
window.

intensive care unit, who need to make decisions under time constraints. Making accurate
clinical predictions may require reading a large volume of clinical notes. This can add to a
doctor’s workload—tools that can make accurate predictions based on clinical notes might
be useful in practice.

Hospital readmission lowers patients’ quality of life and wastes money (Anderson and
Steinberg, 1984; Zuckerman et al., 2016). One estimate puts the financial burden of read-
mission at 17.9 billion dollars and the fraction of avoidable admissions at 76% (Basu Roy
et al., 2015). Accurately predicting readmission has clinical significance both in terms of
efficiency and reducing the burden on intensive care unit doctors.

We develop a discharge support model, ClinicalBert, that processes a patient’s notes
and dynamically assigns a risk score of whether the patient will be readmitted within 30 days
(Figure 1). As physicians and nurses write notes about a patient, ClinicalBert processes
the notes and updates the associated risk score of readmission. This score can help care
providers make informed decisions and intervene in advance if needed. ClinicalBert is also
readily adapted to other tasks such as diagnosis predictions, mortality risk estimation, or
length of stay assessments.

Related Work. Clinical notes use abbreviations, jargon, and have an unusual grammati-
cal structure. Building models that learn useful representations of clinical text is a challenge.

Sager et al. (1995) frame representation learning for clinical notes as machine translation,
translating unstructured text to representative sets of words. The bag-of-words model can
be used for tasks dependent on individual words (Zhang et al., 2010). Log-bilinear word
embedding models such as word2vec have also been used for learning representations of
clinical notes (Mikolov et al., 2013; Pennington et al., 2014). Boag et al. (2018) study the
performance of the bag-of-words model, word2vec, and a Long Short-Term Memory Net-
work (lstm) model combined with word2vec on various tasks such as diagnosis prediction
and mortality risk estimation. Word embedding models such as word2vec are trained us-
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ing the local context of individual words, but as clinical notes are long and their words are
interdependent (Zhang et al., 2018), these methods cannot capture long-range dependencies.

Natural language processing methods where representations include global, long-range
information can yield a boost in performance on various tasks (Peters et al., 2018; Radford,
2018; Devlin et al., 2018). Clinical notes require capturing interactions between distant
words. The need to model this long-range structure makes clinical notes suitable for con-
textual representations like in the bidirectional encoder representations from transformers
(bert) model (Devlin et al., 2018). We develop ClinicalBert by applying bert to clinical
notes. Concurrent to our work, Lee et al. (2019) apply bert to biomedical literature and
Alsentzer et al. (2019) apply bert on clinical notes and discharge summaries.

Methods to evaluate models of clinical notes are also relevant to ClinicalBert. Wang
et al. (2018); Chiu et al. evaluate the quality of biomedical embeddings by computing
correlations between doctor-rated relatedness and embedding similarity scores. They also
evaluate models through performance on downstream tasks such as information extraction.
We adopt similar evaluation techniques in our work.

A good representation of clinical text requires good performance on downstream tasks.
We use 30-day hospital readmission prediction as a case study since it is of clinical im-
portance. We refer readers to Futoma et al. (2015) for comparisons of traditional machine
learning methods such as random forests and neural networks on hospital readmission tasks.
The majority of work in this area has focused on integrating every possible covariate about
a patient into a model. Xiao et al. (2018b) use topic models combined with recurrent neural
networks for interpretability and learn clinical concept embeddings for a readmission task.
Caruana et al. (2015) develop an interpretable model for readmission prediction based on
generalized additive models and highlight the need for intelligible clinical predictions. Rajko-
mar et al. (2018) predict readmission using Fast Healthcare Interoperability Resources codes
from notes, alongside structured information. Most of this previous work uses information
at discharge. In this work, we develop a model that can predict readmission dynamically.

Clinical Significance. ClinicalBert shows improved readmission prediction over meth-
ods that center on discharge summaries. Making a prediction using a discharge summary
at the end of a stay means that there are fewer opportunities to reduce the chance of read-
mission. To build a clinically-relevant model, we define a task for predicting readmission at
any timepoint since a patient was admitted.

To evaluate models on the readmission prediction task, we define a metric motivated by
a clinical challenge. Medicine suffers from alarm fatigue (Sendelbach and Funk, 2013). This
means useful classification rules for medicine need to have high positive predictive value or
precision. We evaluate model performance at a fixed positive predictive value. We show
that ClinicalBert has highest recall compared to other popular methods for representing
clinical notes.

ClinicalBert can be readily applied to other tasks such as mortality prediction and
disease prediction. In addition, self-attention weight output by ClinicalBert can be traced
back to understand which elements of clinical notes were relevant to the current prediction.
This can be used as an interpretability tool for clinicians.

Technical Significance. We apply the bert model (Devlin et al., 2018) to clinical notes.
Clinical notes are lengthy and numerous, and the computationally-efficient architecture of
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Figure 2: ClinicalBert learns deep representations of clinical text using two un-
supervised language modeling tasks: masked language modeling and
next sentence prediction (described in Section 3). In masked language
modeling, a fraction of input tokens are held out for prediction; in next sentence
prediction, ClinicalBert predicts whether two input sentences are consecutive.

bert can model long-term dependencies. Compared to a popular model of clinical text,
word2vec, ClinicalBert more accurately captures clinical word similarity. We describe
one way to scale up ClinicalBert to handle large collections of clinical notes for clinical pre-
diction tasks. In a case study of hospital readmission prediction, ClinicalBert outperforms
a deep language model. We open source ClinicalBert pre-training and readmission model
parameters, along with scripts to reproduce results.

2. ClinicalBert

ClinicalBert learns deep representations of clinical text. These deep representations can be
used to uncover clinical insights, such as predictions of disease, relationships between treat-
ments and outcomes, or summaries of large volume of texts. ClinicalBert is an application
of the bert model (Devlin et al., 2018) to clinical texts; this requires several modifications to
address the challenges intrinsic to clinical texts. Specifically, the representations are learned
using medical notes and further processed for downstream clinical tasks. As an example, we
use the clinical task of hospital readmission prediction.

bert. bert is a deep neural network that uses the transformer encoder architecture (Vaswani
et al., 2017) to learn embeddings for text. We omit a detailed description of the architec-
ture; it is described in full in Vaswani et al. (2017). The transformer encoder architecture is
based on a self-attention mechanism, and the pre-training objective function for the model
is defined using two unsupervised tasks: masked language modeling and next sentence pre-
diction. The text embeddings and model parameters are fit using stochastic optimization.
For downstream tasks, the fine-tuning phase is problem-specific; we describe a fine-tuning
task specific to clinical text.

Clinical Text Embeddings. A clinical note input to ClinicalBert is represented as a
collection of tokens. These tokens are subword units extracted from text in a preprocessing
step (Sennrich et al., 2016). In ClinicalBert, a token in a clinical note is computed as
the sum of the token embedding, a learned segment embedding, and a position embedding.
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Figure 3: ClinicalBert models clinical notes and can be readily adapted to clinical
tasks such as predicting 30-day readmission. The model is fed a patient’s
clinical notes, and the patient’s risk of readmission within a 30-day window is pre-
dicted using a linear layer applied to the classification representation hcls learned
by ClinicalBert. This fine-tuning task is described in Equation (3).

When multiple sequences of tokens are fed to ClinicalBert, the segment embedding identifies
which sequence a token is associated with. The position embedding of a token is a learned
set of parameters corresponding to the token’s position in the input sequence (position
embeddings are shared across tokens). A classification token cls is inserted in front of every
sequence of input tokens, and is used in downstream classification tasks.

Self-Attention Mechanism. The attention function is computed on an input sequence,
using the embeddings associated with the input tokens. The attention function takes as
input a set of queries, keys, and values. To construct the queries, keys, and values, every
input embedding is multiplied by learned sets of weights. For a single query, the output
of the attention function is a weighted combination of values. The weight of a given value
is determined by the interaction of the query and key. Denote a set of queries, keys, and
values by Q, K, and V . The attention function is

Attention(Q, K, V ) = softmax
(
QK>√

d

)
V , (1)

where d is the dimensionality of the queries, keys, and values. This function can be computed
efficiently and can capture long-range interactions between any two elements in the input
sequence (Vaswani et al., 2017). The length and complex patterns in clinical notes make the
transformer architecture that uses this self-attention mechanism a good choice. (We describe
how this self-attention mechanism leads to interpretability of clinical text in Section 4.)

Pre-training ClinicalBert. The quality of learned representations of text depends on
the text the model was trained on. bert is trained on BooksCorpus and Wikipedia. How-
ever, these two datasets are distinct from clinical notes, where jargon and abbreviations are
common and notes have different syntax and grammar than common language in books or
encyclopedias. It is hard to understand clinical notes without professional training. Clini-
calBert is pre-trained on clinical notes as follows.

ClinicalBert uses the same pre-training tasks as in Devlin et al. (2018). Masked language
modeling consists of masking 15% of the input tokens and using the model to predict the
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Model Masked language modeling Next sentence prediction
ClinicalBert 86.80% 99.25%
bert 56.80% 80.50%

Table 1: ClinicalBert improves over bert on two unsupervised language mod-
eling tasks evaluated on a large corpus of clinical text. We report the
accuracy of masked language modeling (predicting held-out tokens) and next sen-
tence prediction (the binary prediction of whether two sentences are consecutive),
on the mimic-iii corpus of clinical notes.

masked tokens. In next sentence prediction, two sentences are fed to the model. The model
outputs a binary prediction of whether these two sentences are in consecutive order. The
pre-training objective function based on the two tasks is the sum of the log-likelihood of the
masked tokens and the log-likelihood of the binary variable indicating whether two sentences
are consecutive.

Fine-tuning ClinicalBert. After pre-training the model, ClinicalBert is fine-tuned on
a task specific to clinical data: readmission prediction. Let readmit be a binary indicator of
readmission of a patient within the next 30 days. Given clinical notes as input, the output
of ClinicalBert is used to predict the probability of readmission:

P (readmit = 1 | hcls) = σ(Whcls) , (2)

where σ is the sigmoid function, hcls is the output of the model associated with the clas-
sification token, and W is a parameter matrix. The model parameters are fine-tuned to
maximize the log-likelihood of this binary classifier.

3. Empirical Study I: Language Modeling and Clinical Word Similarity

We developed ClinicalBert, a model of clinical notes whose representations can be used for
clinical tasks. Before evaluating its performance as a model of readmission in Section 4, we
study its performance in two experiments. First, we find that ClinicalBert outperforms
the original bert model in language modeling tasks. In the second experiment, we compare
ClinicalBert to popular word embedding models using a clinical word similarity task. The
relationships between medical concepts learned by ClinicalBert exhibit better correlation
with human evaluation of similarity. Code for training the ClinicalBert model is available at
https://github.com/kexinhuang12345/clinicalBERT and model parameter checkpoints
are at http://bit.ly/clinicalbert_weights.

Data. We use the public Multiparameter Intelligent Monitoring in Intensive Care (mimic-
iii) dataset (Johnson et al., 2016). mimic-iii consists of the electronic health records of
58,976 unique hospital admissions from 38,597 patients in the intensive care unit of the Beth
Israel Deaconess Medical Center between 2001 and 2012. There are 2,083,180 de-identified
notes associated with the admissions. Preprocessing of the clinical notes is described in Ap-
pendix B. For pre-training ClinicalBert, we randomly sample 100,000 notes from mimic-iii.

6
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Figure 4: ClinicalBert reveals interpretable patterns in medical concepts. The
model is trained on clinical notes from mimic-iii, and the embeddings of clinical
terms from the dataset in Pedersen et al. (2017) are plotted using the t-distributed
stochastic neighbor embedding algorithm for dimensionality reduction (van der
Maaten and Hinton, 2008). The full plot is in Section 5; we highlight a subset
of the plot centered on a cluster of terms relating to heart conditions such as
myocardial infarction, heart failure, and kidney failure.

ClinicalBert hyperparameters and training. The parameters are initialized to the
bertbase parameters released by Devlin et al. (2018); we follow their recommended hyper-
parameter settings. The model dimensionality is 768. We use the Adam optimizer (Kingma
and Ba, 2015) with a learning rate of 2×10−5. The maximum sequence length supported by
the model is set to 512, and the model is first trained using shorter sequences.2 The model
is trained using a maximum sequence length of 128 for 75,000 iterations on the masked lan-
guage modeling and next sentence prediction tasks, with a batch size 32. Next, the model
is trained on longer sequences of maximum length 512 for an additional 75,000 steps with
a batch size of 4. The experiments are conducted on Amazon Web Services using a single
K80 GPU. The masked language modeling task is illustrated in Figure 7.

Results: Language Modeling. We report the accuracy of the masked language modeling
and next sentence prediction tasks on the mimic-iii data in Table 1. The performance of
bert suffers as the model has not been trained on clinical text. This highlights the need to
develop models tailored to clinical data such as ClinicalBert.

Results: Qualitative. We test ClinicalBert on a dataset designed to assess medical
term similarity (Pedersen et al., 2017). This dataset consists of 30 pairs of medical terms
whose similarity is rated by physicians. Although our model is intended for sequences, we
can obtain a feature-based word embedding by feeding the model a sequence that consists
of individual tokens corresponding to a medical term. Devlin et al. (2018) conclude that
the concatenation or sum of the last four hidden states of the encoders in bert has the
best performance on downstream tasks compared to other combination of hidden states.
We use the sum of the last four hidden states of encoders as a representation of medical

2. The details of constructing a sequence are in Devlin et al. (2018). For efficient minibatching that avoids
padding minibatch elements of variable lengths with too many zeros, a corpus is split into multiple
sequences of equal lengths. Many sentences are packed into a sequence until the maximum length is
reached; a sequence may be composed of many sentences. The next sentence prediction task defined in
Devlin et al. (2018) might more accurately be termed a next sequence prediction task.
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Model Pearson correlation
ClinicalBert 0.670
word2vec 0.553
FastText 0.487

Table 2: ClinicalBert accurately captures relationships between clinical terms
as assessed by physicians. The Pearson correlation is computed between the
cosine similarity of embeddings learned by models of clinical text, and physician
ratings of the similarity of medical concepts in the Pedersen et al. (2017) dataset.
These numbers are comparable to the best result (0.632) from Wang et al. (2018).

terms. Medical terms are of various lengths in the clinical concept dataset, so the hidden
states for each subword unit are summed and divided by the number of subword units. This
results in a fixed 768-dimensional vector for each medical term in the dataset. We visualize
the similarity of medical terms using dimensionality reduction (van der Maaten and Hin-
ton, 2008). The full plot is in Appendix A; we highlight a cluster of heart-related concepts
in Figure 4. ClinicalBert has learned a representation space that groups similar medical
concepts. Heart-related concepts such as myocardial infarction, atrial fibrillation, and my-
ocardium are close together; renal failure and kidney failure are also close. ClinicalBert
has captured some clinical semantics.

Comparing Representations Using Human Similarity Judgments. We benchmark
embedding models using the clinical concept dataset in Pedersen et al. (2017). The dataset
consists of concept pairs. The similarity of a pair of concepts is rated by physicians, with a
score ranging from 1.0 to 4.0 (least similar to most similar). To evaluate representations of
clinical text, we calculate the similarity between two concepts’ embeddings a and b using
cosine similarity,

cos(θ) =
a · b
‖a‖‖b‖

.

We calculate the Pearson correlation between physician ratings of medical concept simi-
larity reported in Pedersen et al. (2017) and the computed cosine similarity between model
embeddings. A high correlation score means that a model’s embeddings capture human-
rated similarity between clinical terms. Wang et al. (2018) conducts a similar evaluation
on this data using word2vec word embeddings (Mikolov et al., 2013) trained on clinical
notes, biomedical literature, and Google News. However, they use a private clinical note
dataset from The Mayo Clinic to train the word2vec model. For a fair comparison with
ClinicalBert, we retrain the word2vec model using clinical notes from mimic-iii. The
word2vec model is trained on 2.8 billion words from mimic-iii with the same hyperpa-
rameters as in Wang et al. (2018). word2vec cannot handle out-of-vocabulary words; we
ignore the three medical pairs in the clinical concepts dataset that do not have embeddings
(the correlation score is computed using the remaining 27 medical pairs). Because of this
shortcoming, we also train a FastText model (Bojanowski et al., 2017) on mimic-iii. Fast-
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Text can compute embeddings for out-of-vocabulary words using subword embeddings (we
use the same hyperparameters as in Wang et al. (2018)).

Results: Clinical Concept Similarity. Table 2 shows the correlations with physician
judgments of ClinicalBert and competing models. ClinicalBert more accurately captures
the relationships between clinical terms assessed from physician judgments.

4. Empirical Study II: 30-Day Hospital Readmission Prediction

The deep representations learned by ClinicalBert can be used to build clinically-relevant
models. We focus on the task of building a model for hospital readmission prediction using
clinical notes. Compared to competitive models of language, ClinicalBert accurately pre-
dicts readmission. ClinicalBert also reveals interpretable patterns in medical data that can
be used to understand its predictions.

Cohort. We select a patient cohort from mimic-iii (the full dataset is described in Sec-
tion 3) using covariates associated with each patient. For the readmission prediction task,
we compute the binary readmit label associated with each patient admission as follows.
Patient admissions for which the patient is readmitted within 30 days receive a label of
readmit = 1. All other patient admissions receive a label of zero. This includes patients
with scheduled appointments within 30 days (since we are interested in unexpected readmis-
sion). We notice that 5,854 admissions are in-hospital deaths. Since death does not imply
readmission, we remove these admissions. We also observe that there are 7,863 admissions
where the patient is of type newborn. These are newborns in the neonatal intensive care
unit, where most undergo testing and are sent back for routine care. This leads to a different
distribution of clinical notes and readmission labels; we filter out newborns and focus on
non-newborn readmissions. The final cohort contains 34,560 patients with 2,963 positive
readmission labels and 48,150 negative labels.

4.1. Scalable Readmission Prediction.

Patient are typically associated with many notes. The ClinicalBert model has a fixed
maximum length of input sequence. We split notes into subsequences (each subsequence
is of the maximum length supported by the model), and define how ClinicalBert makes
predictions on long sequences by by binning the predictions on each subsequence. The
probability of readmission for a patient is computed as follows. Assume the patient’s clinical
notes are represented as n subsequences and fed to the model separately; the model outputs
a probability for each subsequence. The probability of readmission is computed using the
probabilities output for each of these subsequences:

P (readmit = 1 | hpatient) =
Pn

max + Pn
meann/c

1 + n/c
, (3)

where c is a scaling factor that controls the amount of influence of the number of sub-
sequences n, and hpatient is the implicit representation ClinicalBert computes from the
entirety of a patient’s notes. Pn

max is the maximum of probability of readmission across
the n subsequences, and Pmean is the mean of the probability of readmission across the n
subsequences a patient’s notes have been split into.
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We find that computing readmission probability using Equation (3) consistently outper-
forms predictions on each subsequence individually by 3–8%. Equation (3) is motivated by
observations: some subsequences (such as tokens corresponding to progress reports) do not
contain information about readmission, whereas others do. The risk of readmission should
be computed using subsequences that correlate with readmission risk, and the effect of unim-
portant subsequences should be minimized. This is accomplished by using the maximum
probability over subsequences. Second, noisy subsequences mislead the model and decrease
performance. For example, say there are 4 subsequences with a score lower than 0.3, and
one one noisy subsequence with a score of 0.8. Simply using the maximum will not account
for cases where the maximum is the noise: this would lead to a false prediction. Therefore,
we also include the average probability of readmission across subsequences. This leads to
a trade-off between the mean and maximum probabilities of readmission in Equation (3).
Finally, if there are a large number of subsequences for a patient with many clinical notes,
there is a higher probability of having a noisy maximum probability of readmission. This
means longer sequences may need to have a larger weight on the mean prediction. We in-
clude this weight as the n/c scaling factor, with c adjusting for patients with many clinical
notes. The denominator comes normalizing the final risk score to be in the unit interval.
Empirically, we find that c = 2 performs best on validation data.

Evaluation. For validation and testing, 10% of the data is held out respectively, and 5-fold
cross-validation is conducted. Each model is evaluated using three metrics:

• Area under the receiver operating characteristic curve: the area under the plot of the
true positive rate against the false positive rate at various thresholds.

• Area under the precision-recall curve: the area under the plot of precision versus recall
at various thresholds.

• Recall at precision of 80%: For the readmission task, false positives are important. To
minimize the number of false positives and thus minimize the risk of alarm fatigue,
we set the precision to 80% (in other words, 20% false positives out of the predicted
positive class) and use the corresponding threshold to calculate recall. This leads to a
clinically-relevant metric that enables us to build models that control the false positive
rate.

4.2. Models

We compose two baselines based on results from Boag et al. (2018). Boag et al. (2018) con-
clude that the bag-of-words model and an lstm model with word2vec embeddings are two
strong baselines for predictive tasks on mimic-iii clinical notes. We compare ClinicalBert
with these two methods.

ClinicalBert. The training parameters are the entire encoder network, along with the
classifier W . Note that the data labels are imbalanced: negative labels are subsampled to
balance the positive readmit labels. In every experiment, ClinicalBert is trained for one
epoch with batch size 4 and learning rate 2 × 10−5. The ClinicalBert model settings are
the same as in Section 3. The binary classifier is a linear layer of shape 768× 1, illustrated
in Figure 2.
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Model Area under receiver
operating characteristic

Area under
precision-recall

Recall at
precision of 80%

ClinicalBert 0.768± 0.027 0.747± 0.029 0.255± 0.113
Bag-of-words 0.684± 0.025 0.674± 0.027 0.217± 0.119
bilstm 0.694± 0.025 0.686± 0.029 0.223± 0.103

Table 3: ClinicalBert accurately predicts 30-day readmission prediction using
discharge summaries. The mean of 5-fold cross validation is reported along
with the standard deviation. ClinicalBert outperforms both the bag-of-words
model and the bilstm deep language model.

Bag-of-words. The bag-of-words model is a simple method that uses word counts to
represent a note. We pick the top 5,000 term frequency-inverse document frequency (tf-idf)
words as features. This means each note is represented by a 5,000-dimensional vector where
each entry is the count of the corresponding vocabulary word occurring in the note. The top
5,000 tf-idf words are computed using the training set. The bag-of-words representation
is then computed for every note in the training and test sets. Logistic regression with L2
regularization is used to fit the training readmission labels.

bilstm and word2vec. Although bag-of-words method is simple and fast, it does not
consider the temporal relationship between words in the note. A Bidirectional Long Short-
Term Memory Network (bilstm) (Schuster and Paliwal, 1997; Hochreiter and Schmidhuber,
1997; Graves and Schmidhuber, 2005) is used to build a deep model of relationships between
words in a sequence. For the input word embedding, the word2vec model from Section 3
is used. The bilstm has 200 output units, with a dropout rate of 0.1. The hidden state
is fed into a global max pooling layer and a fully-connected layer with a dimensionality of
50, followed by a rectifier activation function. The rectifier is followed by a fully-connected
layer with a single output unit with sigmoid activation function. The binary classification
objective function is optimized using the Adam adaptive learning rate (Kingma and Ba,
2015). The bilstm is trained for three epochs with a batch size of 64 with early stopping
based on the validation loss.

4.3. Readmission Prediction With Discharge Summaries

The discharge summary contains essential information of a patients’ stay since it is used by
the post-hospital care team and doctors in future visits (Van Walraven et al., 2002). The
summary may contain information like patients’ discharge conditions, procedures, and treat-
ments, and significant findings (Kind and Smith, 2008). This means discharge summaries
should have predictive value for hospital readmission. Table 3 shows that ClinicalBert out-
performs competitors in terms of precision and recall, on a task of readmission prediction
based on patient discharge summaries.
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Model 24h–48h 48h–72h
ClinicalBert 0.673± 0.041 0.674± 0.043
Bag-of-words 0.648± 0.029 0.654± 0.035
bilstm 0.649± 0.044 0.656± 0.035

(a) Area under receiver operating characteristic

Model 24h–48h 48h–72h
ClinicalBert 0.670± 0.042 0.677± 0.044
Bag-of-words 0.650± 0.027 0.657± 0.026
bilstm 0.660± 0.036 0.668± 0.028

(b) Area under precision-recall

Model 24h–48h 48h–72h
ClinicalBert 0.167± 0.090 0.171± 0.107
Bag-of-words 0.144± 0.094 0.122± 0.106
bilstm 0.143± 0.080 0.150± 0.081

(c) Recall at precision of 80%

Table 4: ClinicalBert outperforms competitive baselines on readmission predic-
tion based on clinical notes from early on within patient admissions.
In the mimic-iii data, admission and discharge times are available, but clinical
notes do not have timestamps. This is why the table headings show a range; this
range shows the cutoff time for notes fed to the model from early on in a patient’s
admission. For example, in the 24–48h column, the model may only take as in-
put a patient’s notes up to 36h because of that patient’s specific admission time.
Metrics are reported as the mean of 5-fold cross validation alongside the standard
deviation.

4.4. Readmission Prediction With Early Clinical Notes

Discharge summaries have predictive power for readmission. However, discharge summaries
might be written after a patient has left the hospital. Therefore, discharge summaries are
not actionable since doctors cannot intervene when a patient has left the hospital. Models
that dynamically predict readmission in the early stages of a patient’s admission are relevant
to clinicians. For the second set of readmission prediction experiments, a maximum of the
first 48 or 72 hours of a patient’s notes are concatenated. These concatenated notes are
used to predict readmission. Since we separate notes into subsequences of the same length,
the training set consists of all subsequences within a maximum of 72 hours, and the model
is tested given only available notes within the first 48 or 72 hours of a patient’s admission.
Note that readmission predictions from a model are not actionable if a patient has been
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Figure 5: ClinicalBert provides interpretable predictions, by revealing which
terms in clinical notes are predictive of patient readmission. The self-
attention mechanisms in ClinicalBert can be used to interpret model predictions
on clinical notes. The input sentence “he has experienced acute chronic diastolic
heart failure in the setting of volume overload due to his sepsis.” is fed to the model
(this sentence is representative of a clinical note found in mimic-iii). Equation (4)
is used to compute a distribution over tokens in this sentence, where every query
token is itself a token in the same input sentence. In the left panel, we show one
of the self-attention mechanisms in ClinicalBert, and only label terms that have
high attention weight. The x-axis are the query tokens and the y-axis are key
tokens. Panels (a), (b), (c), and (d) show other self-attention mechanisms in the
model with the same input sentence, showing that they have specialized to various
patterns in clinical notes indicative of readmission.

discharged. For testing 48 or 72-hour clinical note readmission prediction, patients that are
discharged within 48 or 72 hours (respectively) are filtered out.

The models in Section 4.2 are evaluated using the metrics in Section 4.3. Table 4 shows
that ClinicalBert outperforms the baselines in both experiments. The receiver operating
characteristic and precision-recall results show that ClinicalBert has more confidence and
higher accuracy. At a fixed rate of false alarms, ClinicalBert recalls more patients that
have been readmitted. The accuracy of ClinicalBert increases as the length of admissions
increases and the model has access to more clinical notes.
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Token Position

Figure 6: ClinicalBert captures long-range interactions in clinical notes. Word
position is increasing along both axes. The high attention weights in the upper
right and lower left regions of the attention map indicate long-range relationships
between clinical terms. The attention mechanism is defined in Section 2

4.5. Interpretable predictions in ClinicalBert

Clinicians may mistrust data-driven methods because of a lack of interpretable predictions:
predictions from a neural network are difficult to understand for humans, and it is not clear
why a model made a certain prediction or what parts of input data were most informa-
tive. ClinicalBert uses several self-attention mechanisms which can be used to inspect its
predictions, by visualizing terms correlated with predictions of hospital readmission.

For every clinical note input to ClinicalBert, each self-attention mechanism computes
a distribution over every term in a sentence, given a query. For a given query vector q
computed from an input token, the attention weight distribution is defined as

AttentionWeight(q,K) = softmax
(
qK>√
d

)
. (4)

The attention weights are the weights used to compute the weighted sum of values in
Equation (1). A high attention weight between a query and key token means the interaction
between these tokens is predictive of readmission. In the ClinicalBert encoder, there are
144 self-attention mechanisms (or, 12 multi-head attention mechanisms for each of the 12
transformer encoders). After training, each mechanism specializes to different patterns in
clinical notes that are indicative of readmission.

To illustrate this, a sentence representative of a mimic-iii note is input to ClinicalBert.
For this sentence, the queries are the tokens in the sentence, and the keys are the tokens in
the same sentence. Select attention mechanism distributions for every query are computed
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using Equation (4) and visualized in Figure 5. The left panel shows an attention mechanism
that is activated for the word chronic and acute given any query term. It means some
heads search for specific predictive terms. This computation is similar to the bag-of-words
model. Intuitively, presence of the token associated with the word “chronic" is a predictor
of readmission.

The attention mechanism visualized in panel (a) of Figure 5 shows that attention weights
that are high for keys within a certain window of a query token. This attention mechanism
may focus on local information analogously to the local context window used in word2vec.
The attention mechanism in panel (b) shows a pattern shifted below the diagonal: this means
that the attention weight is high when the query and key terms are adjacent, which is remi-
niscent of a bigram model (trigram-type of attention mechanisms have also been observed).
The attention weights in (c) are less interpretable. Figure 6 visualizes attention weights
for a long clinical note. The large off-diagonal attention weights show that ClinicalBert
captures correlation across long ranges of clinical text to make readmission predictions.

5. Discussion

We developed ClinicalBert, a model for learning deep representations of clinical text. Em-
pirically, ClinicalBert is an accurate language model and captures semantic relationships in
clinical text as judged by physicians. In a 30-day hospital readmission prediction task, Clin-
icalBert outperforms a deep language model and yields a 15% relative increase on recall at
a fixed rate of false alarms. Future work includes engineering to scale ClinicalBert to cap-
ture dependencies in very long clinical notes; the max and sum operations in Equation (3)
may not capture correlations within long notes. The publicly-available ClinicalBert model
parameters can be used to evaluate performance on clinically-relevant prediction tasks based
on clinical notes.

Acknowledgments. We thank Noémie Elhadad for helpful discussion. Grass by Milinda
Courey from the Noun Project.
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Appendix A. Dimensionality-reduced clinical concept embeddings
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Figure 7: ClinicalBert captures qualitative relationships among clinical concepts
in a database of medical terms from Pedersen et al. (2017). The medical
terms embeddings are computed using the output of ClinicalBert, and visualized
using the t-distributed stochastic neighbor embedding algorithm for dimensional-
ity reduction (van der Maaten and Hinton, 2008).

Appendix B. Preprocessing Notes for Pretraining ClinicalBERT

ClinicalBert requires minimal preprocessing. First, words are converted to lowercase and
line breaks and carriage returns are removed. Then de-identified brackets and remove special
characters like ==,−− are removed.

The next sentence prediction pretraining task described in Section 5 requires two sen-
tences at every iteration. The SpaCy sentence segmentation package is used to segment
each note (Honnibal and Montani, 2017). Since clinical notes don’t follow rigid standard
language grammar, we find rule-based segmentation has better results than dependency-
parsing-based segmentation. Various segmentation signs that misguide rule-based segmen-
tators are removed (such as 1.2.) or replaced (M.D., dr. with MD,Dr). Clinical notes can
include various lab results and medications that also contain numerous rule-based separators,
such as 20mg, p.o., q.d.. To address this, segmentations that have less than 20 words are
fused into the previous segmentation so that they are not singled out as different sentences.
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