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1. Can we formalize computational tradeoffs in inference?

2. Can we leverage intractable distributions as approximate posteriors?
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Background

Given

• Data set x.

• Generative model p(x, z) with latent variables z ∈ Rd .

Goal

• Infer posterior p(z | x).



Background

Variational inference

• Posit a family of distributions q ∈ Q.

• Typically minimize KL (q ‖ p), which is equivalent to maximizing

Eq(z)[log p(x, z)− log q(z)].



Operator Objectives

There are three ingredients:

1. An operator Op,q that depends on p(z | x) and q(z).

2. A family of test functions f ∈ F , where each f (z) : Rd → Rd .

3. A distance function t(a) : R→ [0,∞).

These three ingredients combine to form an operator objective,

sup
f∈F

t( Eq(z)[(Op,q f )(z)] ).

It is the worst-case expected value among all functions f ∈ F .



Operator Objectives

The goal is to minimize this objective,

inf
q∈Q

sup
f∈F

t( Eq(z)[(Op,q f )(z)] ).

In practice, we parameterize the variational family, {q(z;λ)}. We also
parameterize the test functions {f (z; θ)} with a neural network.

λ∗ = min
λ
max
θ
t( Eλ[(Op,q fθ)(z)] )



Operator Objectives

sup
f∈F

t( Eq(z)[(Op,q f )(z)] ).

To use these objectives for variational inference, we impose two conditions:

1. Closeness. Its minimum is achieved at the posterior,

Ep(z | x)[(Op,pf )(z)] = 0 for all f ∈ F .

2. Tractability. The operator Op,q—originally in terms of p(z | x) and
q(z)—can be written in terms of p(x, z) and q(z).



Operator Objectives: Examples

KL variational objective. The operator is

(Op,q f )(z) = log q(z)− log p(x, z) ∀f ∈ F .

With distance function t(a) = a, the objective is

Eq(z)[log q(z)− log p(x, z)].



Operator Objectives: Examples
KL variational objective. The operator is

(Op,q f )(z) = log q(z)− log p(x, z) ∀f ∈ F .

With distance function t(a) = a, the objective is

Eq(z)[log q(z)− log p(x, z)].

Langevin-Stein variational objective. The operator is

(Op f )(z) = ∇z log p(x, z)>f (z) +∇>f ,

where∇>f is the divergence of f . With distance function t(a) = a2, the
objective is

sup
f∈F

( Eq(z)[∇z log p(x, z)>f (z) +∇>f ] )2.



Operator Variational Inference

min
λ
max
θ
t( Eλ[(Op,q fθ)(z)] ).

Fix t(a) = a2; the case of t(a) = a easily applies.



Operator Variational Inference

min
λ
max
θ
t( Eλ[(Op,q fθ)(z)] ).

Fix t(a) = a2; the case of t(a) = a easily applies.

Gradient with respect to λ. (Variational approximation)

∇λLθ = 2 Eλ[(Op,q fθ)(Z)]∇λEλ[(Op,q fθ)(Z)].

We use the score function gradient (Ranganath et al., 2014) and
reparameterization gradient (Kingma & Welling, 2014).



Operator Variational Inference

min
λ
max
θ
t( Eλ[(Op,q fθ)(z)] ).

Fix t(a) = a2; the case of t(a) = a easily applies.

Gradient with respect to λ. (Variational approximation)

∇λLθ = 2 Eλ[(Op,q fθ)(Z)]∇λEλ[(Op,q fθ)(Z)].

We use the score function gradient (Ranganath et al., 2014) and
reparameterization gradient (Kingma & Welling, 2014).

Gradient with respect to θ. (Test function)

∇θLλ = 2 Eλ[(Op,qfθ)(z)] Eλ[∇θOp,q fθ(z)].

We construct stochastic gradients with two sets of Monte Carlo
estimates.



Characterizing Objectives: Data Subsampling

Stochastic optimization scales variational inference to massive data (Hoffman
et al., 2013; Salimans & Knowles, 2013). The idea is to subsample data and
scale the log-likelihood,

log p(x1:n, z1:n, β) = log p(β) +
N∑
n=1

[
log p(xn | zn, β) + log p(zn |β)

]
.

≈ log p(β) + M
N

M∑
m=1

[
log p(xm | zm, β) + log p(zm |β)

]
.



Characterizing Objectives: Data Subsampling

Stochastic optimization scales variational inference to massive data (Hoffman
et al., 2013; Salimans & Knowles, 2013). The idea is to subsample data and
scale the log-likelihood,

log p(x1:n, z1:n, β) = log p(β) +
N∑
n=1

[
log p(xn | zn, β) + log p(zn |β)

]
.

≈ log p(β) + M
N

M∑
m=1

[
log p(xm | zm, β) + log p(zm |β)

]
.

One class of operators which admit data subsampling are linear operators
with respect to log p(x, z).

The LS and KL operators are examples in this class. (An operator for
f -divergences is not.)



Characterizing Objectives: Variational Programs

Recent advances in variational inference aim to develop expressive
approximations, such as with transformations (Rezende & Mohamed, 2015;
Tran et al., 2015; Kingma et al., 2016) and auxiliary variables (Salimans et al.,
2015; Tran et al., 2016; Ranganath et al., 2016).

In variational inference, our design of the variational family q ∈ Q is limited
by a tractable density.



Characterizing Objectives: Variational Programs

We can design operators that do not depend on q, Op,q = Op, such as the LS
objective

sup
f∈F

( Eq(z)[∇z log p(x, z)>f (z) +∇>f ] )2.

The class of approximating families is much larger, which we call variational
programs.

Consider a generative program of latent variables,

ε ∼ Normal(0, 1), z = G(ε;λ),

where G is a neural network. The program is differentiable and generates
samples for z. Moreover, its density does not have to be tractable.



Experiments

Variational program:

1. Draw ε, ε′ ∼ Normal(0, 1).

2. If ε′ > 0, return G1(ε); else if ε′ ≤ 0, return G2(ε).

1-D Mixture of Gaussians. LS with a Gaussian family fits a mode. LS with a
variational program approaches the truth.



Experiments

We model binarized MNIST, xn ∈ {0, 1}28×28, with

zn ∼ Normal(0, 1),
xn ∼ Bernoulli(logistic(z>n W+ b)),

where zn has latent dimension 10 and with parameters {W, b}.

Inference method Completed data log-likelihood

Mean-field Gaussian + KL(q||p) -59.3
Mean-field Gaussian + LS -75.3
Variational Program + LS -58.9
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