Operator Variational Inference

1. Can we formalize computational tradeoffs in inference?

2. Can we leverage intractable distributions as approximate posteriors?
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Background

Given

e Data set x.

e Generative model p(x, z) with latent variables z € RY.
Goal

e Infer posterior p(z | x).



Background

Variational inference
e Posit a family of distributions g € Q.

o Typically minimize KL (g || p), which is equivalent to maximizing

Eq(z)[log p(x,2) — log q(2)].



Operator Objectives

There are three ingredients:
1. An operator 0”9 that depends on p(z | x) and g(z).
2. A family of test functions f € F, where each f(z) : R — R’
3. Adistance function t(a) : R — [0, 00).

These three ingredients combine to form an operator objective,

sup t( Eqy [(0791)(2)] )-
feF

It is the worst-case expected value among all functions f € F.



Operator Objectives

The goal is to minimize this objective,

inf sup t( Eq) [(077£)(2)] ).

qEQfe

In practice, we parameterize the variational family, {g(z; ) }. We also
parameterize the test functions {f(z; 8)} with a neural network.

\F = m)in max t( Ex[(0”7f5)(2)] )



Operator Objectives

sup t( Eq()[(07£)(2)] )-

feF
To use these objectives for variational inference, we impose two conditions:

1. Closeness. Its minimum is achieved at the posterior,

Epz ) [(0PPf)(2)] = O forallf € F.

2. Tractability. The operator 077 —originally in terms of p(z| x) and
q(z)—can be written in terms of p(x,z) and g(z).



Operator Objectives: Examples

KL variational objective. The operator is

(0791)(2) = log g(z) — logp(x,2) Vf € F.

With distance function t(a) = a, the objective is

IEq(z)[log q(z) — log p(x, Z)]



Operator Objectives: Examples
KL variational objective. The operator is
(09f)(z) = logq(z) — logp(x,z) Vf € F.

With distance function t(a) = a, the objective is
Eq(z)[log q(z) — log p(x, z)].

Langevin-Stein variational objective. The operator is
(0°f)(z) = V,logp(x,2) " f(z) + Vf,

where VT f is the divergence of f. With distance function t(a) = @, the
objective is

sup ( Eq(Z) [V log p(x, z)Tf(z) + va] )2-
feF



Operator Variational Inference

min max t( Ex[(07fp)(2)] )-

Fix t(a) = d?; the case of t(a) = a easily applies.



Operator Variational Inference

min max t( E[(0°5)(@)] ).
Fix t(a) = d?; the case of t(a) = a easily applies.
Gradient with respect to \. (Variational approximation)
ViaLe = 2 EA[(0775)(Z)] VAEA[(O7 f5)(2)].

We use the score function gradient (Ranganath et al., 2014) and
reparameterization gradient (Kingma & Welling, 2014).



Operator Variational Inference

min max t( Ex[(07fp)(2)] )-

Fix t(a) = d?; the case of t(a) = a easily applies.
Gradient with respect to \. (Variational approximation)
VLo = 2 Ex[(07715)(2)] VAEA[(07"f5)(2)]-

We use the score function gradient (Ranganath et al., 2014) and
reparameterization gradient (Kingma & Welling, 2014).

Gradient with respect to 6. (Test function)
V.gf,)\ =2 E)\[(Op’qfe)(z)] E)\[Vgop’qu(z)].

We construct stochastic gradients with two sets of Monte Carlo
estimates.



Characterizing Objectives: Data Subsampling

Stochastic optimization scales variational inference to massive data (Hoffman
et al., 2013; Salimans & Knowles, 2013). The idea is to subsample data and
scale the log-likelihood,

Mz

log p(x1:n, 21:n, B) = log p(B) + [logpxnlzm +logp(zn|6)]
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Characterizing Objectives: Data Subsampling
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One class of operators which admit data subsampling are linear operators
with respect to log p(x, z).

The LS and KL operators are examples in this class. (An operator for
f-divergences is not.)



Characterizing Objectives: Variational Programs

Recent advances in variational inference aim to develop expressive
approximations, such as with transformations (Rezende & Mohamed, 2015;
Tran et al., 2015; Kingma et al., 2016) and auxiliary variables (Salimans et al.,
2015; Tran et al., 2016; Ranganath et al., 2016).

In variational inference, our design of the variational family g € Q is limited
by a tractable density.



Characterizing Objectives: Variational Programs

We can design operators that do not depend on g, 0”9 = 0P, such as the LS
objective

sup ( Eqz)[V:logp(x.2) ' f(z) + V1] )"
feF

The class of approximating families is much larger, which we call variational
programs.

Consider a generative program of latent variables,
€ ~ Normal(0,1), z=G(¢;\),

where G is a neural network. The program is differentiable and generates
samples for z. Moreover, its density does not have to be tractable.



Experiments

Variational program:
1. Draw €, €’ ~ Normal(0, 1).

2. If € > 0, return Gy (€); else if ¢ < 0, return Gy (€).

—Lang-Stein Variational Program
JM ’l[ ‘| I
-5 0 5 -5 0 5
Value of Latent Variable z Value of Latent Variable z

1-D Mixture of Gaussians. LS with a Gaussian family fits a mode. LS with a
variational program approaches the truth.



Experiments

We model binarized MNIST, x,, € {0, 1}%8%28 with

z, ~ Normal(0, 1),
X, ~ Bernoulli(logistic(z, W + b)),

where z,, has latent dimension 10 and with parameters {W, b}.

Inference method Completed data log-Llikelihood
Mean-field Gaussian + KL(g||p) -59.3
Mean-field Gaussian + LS -75.3

Variational Program + LS -58.9
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